ꢀ
L. Theveau et al. / Tetrahedron 69 (2013) 4375e4380
4380
K.; Sekizawa, H.; Itami, K. J. Am. Chem. Soc. 2009, 131, 14622e14623; (e) Strot-
man, N. A.; Chobanian, H. R.; Guo, Y.; He, J.; Wilson, J. E. Org. Lett. 2010, 12,
3578e3581; (f) Wasa, M.; Worell, B. T.; Yu, J.-Q. Angew. Chem., Int. Ed. 2010, 49,
1275e1277; (g) Lapointe, D.; Markiewicz, T.; Whipp, C. J.; Toderian, A.; Fagnou,
K. J. Org. Chem. 2011, 76, 749e759; (h) Guo, P.; Min Joo, J.; Rakshit, S.; Sames, D.
J. Am. Chem. Soc. 2011, 133, 16338e16341; (i) Si Larbi, K.; Fu, H. Y.; Laidaoui, N.;
Beydoun, K.; Miloudi, A.; El Abed, D.; Djabbar, S.; Doucet, H. ChemCatChem
2012, 4, 815e823.
J¼7.2 Hz), 4.41 (q, 2H, J¼7.2 Hz), 7.45e7.47 (m, 3H), 7.90 (s, 1H),
8.04e8.07 (m, 2H); 13C NMR (CDCl3, 75 MHz)
d
¼14.3, 61.5, 126.7,
126.8, 128.5, 130.5, 149.1, 155.6, 162.0; IR (KBr)
n 3109, 2977, 1719,
1583, 1495, 1370, 1226, 1189, 1066, 762, 686, 643 cmꢁ1; Anal. Calcd
for C12H11NO3 (217.2): C, 66.35; H, 5.10; N, 6.45. Found: C, 66.27; H,
5.04; N, 6.58.
4. For direct substitutive coupling reports evoking an electrophilic-type mecha-
nism: (a) Catellani, M.; Chiusoli, P. J. Organomet. Chem. 1992, 425, 151e154; (b)
Pivsa-Art, S.; Datoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Bull. Chem. Soc. Jpn.
1998, 71, 467e473; (c) Glover, B.; Harvey, K. A.; Liu, B.; Sharp, M. J.; Tymoschenko,
M. F. Org. Lett. 2003, 5, 301e304; (d) Hoarau, C.; Du Fou de Kerdaniel, A.; Bracq, N.;
Grandclaudon, P.; Couture, A.; Marsais, F. Tetrahedron Lett. 2005, 46, 8573e8577;
(e) Chiong, H. A.; Daugulis, O. Org. Lett. 2007, 9, 1449e1451.
4.2.3. tert-Butyl 2-phenylthiazole-4-carboxylate (2b). Following the
general procedure using 2a (50 mg, 0.27 mmol) with bromo-
benzene (28 m
l, 0.27 mmol), PtBu2Me$HBF4 (6.7 mg, 0.027 mmol),
cesium carbonate (175 mg, 0.54 mmol) in DMF (0.27 M). Standard
workup followed by flash chromatography (petroleum ether-
eEtOAc/9:1, Rf¼0.2) afforded the title product (64 mg, 91%) as
5. For direct substitutive couplings reports evoking
a carbopalladation-type
mechanism: (a) Gozzi, C.; Lavenot, L.; Ilg, K.; Panalva, V.; Lemaire, M. Tetrahe-
dron Lett. 1997, 38, 8867e8870; (b) Lavenot, L.; Gozzi, C.; Ilg, K.; Penalva, V.;
Lemaire, M. J. Organomet. Chem. 1998, 567, 49e55; (c) Tang, S.-Y.; Guo, Q.-X.; Fu,
Y. Chem.dEur. J. 2011, 17, 13866e13876; (d) Steinmetz, M.; Ueda, K.; Grimme, S.;
Yamaguchi, J.; Kirchberg, S.; Itami, K.; Studer, A. Chem.dAsian. J. 2012, 7,
1256e1260.
a white solid (mp¼78 ꢀC). 1H NMR (CDCl3, 300 MHz)
¼1.62 (s, 9H),
d
7.42e7.45 (m, 3H), 7.99e8.03 (m, 2H), 8.02 (s, 1H); 13C NMR (CDCl3,
75 MHz)
168.6; IR (KBr)
d
¼28.3, 82.1, 126.4, 127.0, 129.0, 130.7, 133.0, 149.5, 160.6,
n
3112, 2993, 2976, 2932, 1714 cmꢁ1; Anal. Calcd for
6. For selected direct substitutive couplings reports evoking a concerted metal-
C12H11NO3 (261.34): C, 64.34; H, 5.79; N, 5.36; S, 12.27 Found: C,
64.38; H, 5.86; N, 5.31; S, 12.25.
ꢀ
lationedeprotonation type mechanism, see (a) Gonzalez, J. J.; García, N.;
ꢀ
Gomez-Lor, B.; Echavarren, A. M. J. Org. Chem. 1997, 62, 1286e1291; (b) García-
Cuadrado, D.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc.
2006, 128, 1066e1067; (c) Campeau, L.-C.; Fagnou, K. Chem. Commun. 2006,
1253e1264; (d) Campeau, L.-C.; Stuart, D. R.; Leclerc, J.-P.; Bertrand-Laperle, M.;
Villemure, E.; Sun, H.-Y.; Lasserre, S.; Guimond, N.; Lecavallier, M.; Fagnou, K. J.
Am. Chem. Soc. 2009, 131, 3291e3306; (e) Ackermann, L. Chem. Rev. 2011, 111,
4.2.4. tert-Butyl 5-phenylthiazole-4-carboxylate (2c). Following the
general procedure using 2a (50 mg, 0.27 mmol) with bromobenzene
(28
ml, 0.27 mmol), PCy3$HBF4 (10 mg, 0.027 mmol), potassium
ꢀ
1315e1345; (f) Grosse, S.; Pillard, C.; Massip, S.; Leger, J.-M.; Jarry, C.; Bourg, B.;
Bernard, P.; Guillaumet, G. Chem.dEur. J. 2012, 18, 14943e14947.
carbonate (75 mg, 0.54 mmol) in DMF (0.27 M). Standard workup
followed by flash chromatography (petroleum ethereEt2O/8:2,
Rf¼0.1) afforded the title product (41 mg, 59%) as a white solid
7. (a) Chiong, H. A.; Pham, Q.-N.; Daugulis, O. J. Am. Chem. Soc. 2007, 129,
ꢀ
9879e9884; (b) Liegault, B.; Petrov, I.; Gorelsky, S. I.; Fagnou, K. J. Org. Chem.
(mp¼52e54 ꢀC).1H NMR (CDCl3, 300 MHz)
d
¼1.39 (s, 9H), 7.41e7.44
¼27.9, 82.2, 128.3,
3073, 2972,
2010, 75, 1047e1060; (c) Sun, H.-Y.; Gorelsky, S. I.; Stuart, D. R.; Campeau, L.-C.;
Fagnou, K. J. Org. Chem. 2010, 75, 8180e8189; (d) Rene, O.; Fagnou, K. Adv. Synth.
Catal. 2010, 352, 2116e2120; (e) Gorelsky, S.; Lapointe, D.; Fagnou, K. J. Org.
Chem. 2012, 77, 658e668; (f) Petit, A.; Flygare, J.; Miller, A. T.; Winkel, G.; Ess, D.
H. Org. Lett. 2012, 14, 3680e3683.
8. For selected reports on PivOH additive positive-effect in transition metal-
catalyzed substitutive coupling of heteroaromatics via CMD-type mechanism,
see: (a) Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496e16497; (b)
Balcells, D.; Clot, E.; Eisenstein, O. Chem. Rev. 2010, 110, 749e823.
9. (a) Do, H.-Q.; Kashif Khan, R. M.; Daugulis, O. J. Am. Chem. Soc. 2008, 130,
15185e15192; (b) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009,
42, 1074e1086.
(m, 5H), 8.75 (s, 1H); 13C NMR (CDCl3, 75 MHz)
d
129.1, 130.1, 130.9, 143.4, 144.9, 151.3, 161.3; IR (KBr)
n
1715, 1139 cmꢁ1; Anal. Calcd for C12H11NO3 (261.34): C, 64.34; H,
5.79; N, 5.36; S, 12.27 Found: C, 64.60; H, 5.82; N, 5.38; S, 12.33.
Acknowledgements
We gratefully acknowledge Dr. Lieven Meerpoel for useful dis-
cussions during this work and also, Janssen R&D for financial sup-
port. We thank the Centre de ressources Informatiques de haute-
Normandie (CRIHAN) for software optimization and kind techni-
cal support.
10. Bellina, F.; Cauteruccio, S.; Rossi, R. Curr. Org. Chem. 2008, 12, 774e790.
11. (a) Sanchez, R.; Zhuravlev, F. A. J. Am. Chem. Soc. 2007, 129, 5824e5825; (b)
Zhuravlev, F. A. Tetrahedron Lett. 2006, 47, 2929e2932.
12. (a) Verrier, C.; Martin, T.; Hoarau, C.; Marsais, F. J. Org. Chem. 2008, 73,
7383e7386; (b) Martin, T.; Verrier, C.; Hoarau, C.; Marsais, F. Org. Lett. 2008, 10,
2909e2912.
ꢀ
13. Theveau, L.; Verrier, C.; Lassalas, P.; Martin, T.; Dupas, G.; Querolle, O.; Van
Supplementary data
Hijfte, L.; Marsais, F.; Hoarau, C. Chem.dEur. J. 2011, 17, 14450e14463.
14. Vedejs, E.; Monahan, S. D. J. Org. Chem. 1996, 61, 5192e5193.
15. Kefalidis, C. E.; Baudoin, O.; Clot, E. Dalton Trans. 2010, 39, 10528e10535.
16. Free Gibbs energy of activation for acetate-assisted C2eH and C5eH CMD-TS
were calculated through DFT calculations using B3LYP method. Calculated
value for C2eH and C5eH CMD-TS of methyl oxazole-4-carboxylate are 22.
9 kcal molꢁ1 and 23.3 kcal molꢁ1, respectively, that is, 1.5 kcal molꢁ1of differ-
ence. See the Supplementary data of Ref. 13.
Supplementary data related to this article can be found at http://
References and notes
17. Iodide poisoning effect of catalyst is known to inhibit CMD reactivity: Campeau,
L.-C.; Parisien, M.; Jean, A.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 581e590.
18. See computational data in the Supporting data and 5c
1. For recent representative reviews on catalytic direct CeH bond functionaliza-
tion, see: (a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed.
2009, 48, 5094e5115; (b) Lyons, T. W.; Sandford, M. S. Chem. Rev. 2010, 110,
1147e1196; (c) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215e1292; (d) Liu,
C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780e1824; (e) Engle, K. M.;
Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788e802; (f) Yamaguchi,
J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960e9009; (g)
Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem., Int. Ed.
2012, 51, 2e21; (h) Arockian, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012,
112, 5879e5918; (i) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45,
936e946.
2. For recent representative reviews on Palladium-catalyzed direct CeH bond
functionalization with halides, see: (a) Campeau, L.-C.; Stuart, D. R.; Fagnou, K.
Aldrichimica Acta 2007, 40, 35e41; (b) Alberico, D.; Scott, M. E.; Lautens, M.
Chem. Rev. 2007, 107, 174e238; (c) Bellina, F.; Rossi, R. Tetrahedron 2009, 65,
10269e10310; (d) Roger, J.; Gottumukkala, A. L.; Doucet, H. ChemCatChem 2010,
2, 20e40; (e) Ackermann, L. Chem. Commun. 2010, 46, 4866e4877; (f) Fisch-
meister, C.; Doucet, H. Green Chem. 2011, 13, 741e753.
19. Rousseaux, S.; Davi, M.; Sofack-Kreutzer, J.; Pierre, C.; Kefalidis, C. E.; Clot, E.;
Fagnou, K.; Baudoin, O. J. Am. Chem. Soc. 2010, 132, 10706e10716.
20. Several computational studies evidenced the formation of k1 or k2 carbonate
coordinated palladium complex after oxidative addition step and displacement
of bromide, see: (a) Biswas, B.; Sugimoto, M.; Sakaki, S. Organometallics 2000,
19, 3895e3908; (b) Davies, D. L.; Donald, S. M. A.; Macgregor, S. A. J. Am. Chem.
Soc. 2005, 127, 13754e13755 Noteworthy, Clot et al. have recently reported the
first computational study about energetics of bromide substitution with dif-
ferent bases, see Ref. 15.
21. (a) Flemming, J. F.; Pilon, M. C.; Borbulevitch, O. Y.; Antipin, M. Y.; Grushin, V. V.
Inorg. Chim. Acta 1998, 280, 87e98; (b) Kozuch, S.; Shaik, S.; Jutand, A.; Ama-
tore, C. Chem.dEur. J. 2004, 10, 3072e3080; (c) Kalek, M.; Stawinski, J. Organ-
ometallics 2007, 26, 5840e5847; Kalek, M.; Stawinski, J. Organometallics 2008,
27, 5876e5888; Halogen substitution by the base is shown to occur through an
associative SN2-type pathway on tricoordinated palladium(II) center, see Ref.
15. It has been previously demonstrated that monoligated palladium complex is
the effective specie for the oxidative addition step affording a tricoordinated
palladium(II) complex. See Christmann, U.; Vilar, R. Angew. Chem., Int. Ed. 2005,
44, 366e374 and; Fu, G. C. Acc. Chem. Res. 2008, 41, 1555e1564.
3. For selected examples of orthogonal control, see: (a) Kondo, Y.; Komine, T.;
Sakamoto, T. Org. Lett. 2000, 2, 3111e3113; (b) Campeau, L.-C.; Schipper, D.;
Fagnou, K. J. Am. Chem. Soc. 2008, 130, 3266e3267; (c) Campeau, L.-C.; Schipper,
D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 3276e3277; (d) Yanagisawa, S.; Ueda,