C O M M U N I C A T I O N S
Table 4. Cu(II)-Catalyzed C2 Phenylation on N-Acetylindoles
particular, the C3 to C2 migration, and application of Cu(II)-catalyzed
arylation to other systems. This work will be reported in due course.
Acknowledgment. We gratefully acknowledge BBSRC and
GlaxoSmithKline for Industrial Case Award (R.J.P.), the Royal Society
(for University Research Fellowship to M.J.G.), Philip & Patricia
Brown (for Next Generation Fellowship to M.J.G.), and EPSRC Mass
Spectrometry Service (Swansea). We also thank Dr Simon Peace (GSK
Medicines Research Center, Gunnels Wood Road, Stevenage, SG1
2NY, UK) for useful discussion.
entry
R
temp, °C
C2:C3a
isolated yield 5 %
1
2
3
4
H
60
70
60
70
70
70
9:1
8:1
7:1
7:1
6:1
9:1
83 (5a)
76 (5b)
72 (5c)
81 (5d)
61 (5e)
37 (5f)
5-Br
5-OMe
6-CO2Me
5-CHO
5-NO2
5
6b
Supporting Information Available: Experimental data and proce-
dures for all compounds. This material is available free of charge via the
a Determined by 1H NMR. b Isolated yield at 63% conversion of
indole using 20 mol % of Cu(OTf)2.
References
Table 5. Cu(II)-Catalyzed C2 Arylation of N-Acetylindole
(1) Recent reviews: (a) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. ReV. 2002,
102, 1731. (b) Campeau, L.-C.; Fagnou, K. Chem. Commun. 2005, 1253.
(c) Daugulis, O.; Zaitsev, V. G.; Shabashov, D.; Pham, Q.-N.; Lazareva,
A. Synlett 2006, 3382. (d) Godula, K.; Sames, D. Science 2006, 312, 67.
(e) Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439. (f) Alberico,
D.; Scott, M. E.; Lautens, M. Chem. ReV. 2007, 107, 174. (g) Seregin,
I. V.; Gevorgyan, V. Chem. Soc. ReV. 2007, 36, 1173. (h) Davies, H. M. L.;
Manning, J. R. Nature 2008, 451, 417.
(2) For selected arylation examples, see: (a) LaFrance, M.; Fagnou, K. J. Am.
Chem. Soc. 2006, 128, 16496. (b) Chiong, H. A.; Pham, Q.-N.; Daugulis,
O. J. Am. Chem. Soc. 2007, 129, 9879. (c) Giri, R.; Maugel, N.; Li, J.-J.;
Wang, D.-H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. J. Am. Chem.
Soc. 2007, 129, 3510. (d) Li, B.-J.; Tian, S.-L.; Fang, Z.; Shi, Z.-J. Angew.
Chem., Int. Ed. 2008, 47, 1115. (e) Hull, K. L.; Sanford, M. S. J. Am.
Chem. Soc. 2007, 129, 11904, and references therein. For examples of site-
selective reactions, see: (f) Campeau, L.-C.; Schipper, D. J.; Fagnou, K.
J. Am. Chem. Soc. 2008, 130, 3266. (g) Campeau, L.-C.; Bertrand-Laperle,
M.; Leclerc, J.-P.; Villemure, E.; Gorelsky, S.; Fagnou, K. J. Am. Chem.
Soc. 2008, 130, 3276.
(3) (a) Hinman, A.; Du Bois, J. J. Am. Chem. Soc. 2003, 125, 11510. (b) Bowie,
A. L.; Hughes, C. C.; Trauner, D. Org. Lett. 2005, 7, 5207. (c) Covell,
D. J.; Vermeulen, M. A.; Labenz, N. A.; White, M. C. Angew. Chem., Int.
Ed. 2006, 45, 8217. (d) Johnson, J. A.; Li, N.; Sames, D. J. Am. Chem.
Soc. 2002, 124, 6900. (e) Baran, P. S.; Corey, E. J. J. Am. Chem. Soc.
2002, 124, 7904.
(4) (a) Moritani, I.; Fujiwara, Y. Tetrahedron Lett. 1967, 1119. (b) Fujiwara,
Y.; Moritani, I.; Danno, S.; Asano, R.; Teranishi, S. J. Am. Chem. Soc.
1969, 91, 7166. See also: (c) Ferreira, E. M.; Stoltz, B. M. J. Am. Chem.
Soc. 2003, 125, 9578.
entry
Ar
C2:C3 (total yield)a
isolated yield 5 %
1
2
3
4
5
6
7
8
9
4-(Me)C6H4
4-(OMe)C6H4
4-(F)C6H4
4-(Cl)C6H4
4-(Br)C6H4
4-(I)C6H4
3-(Br)C6H4
3-(CF3)C6H4
4-(CO2Et)C6H4
4-(NO2)C6H4
6.5:1 (79)
2.6:1 (68)
6:1 (84)
5:1 (83)
6:1 (95)
5.5:1 (66)
7:1 (91)
6.5:1 (90)
4:1 (92)
3:1 (72)
69 (5g)
49 (5h)
72 (5i)
83 (5j)
82 (5k)
56 (5l)
80 (5m)
78 (5n)
73 (5o)
54 (5p)
10
a Ratio determined by 1H NMR.
of an N-acetyl group might render the intermediate iminium ion IV
more likely to accept the migrating C-Cu bond at the C2 position
(IV to V to VI). Moreover, the carbonyl oxygen of the amide may
steer the Cu(III) species to C2 (Scheme 1b).
(5) (a) Grimster, N. P.; Gauntlett, C.; Godfrey, C. M. R.; Gaunt, M. J. Angew.
Chem., Int. Ed. 2005, 44, 3125. (b) Beck, E. M.; Hatley, R.; Gaunt, M. J.
J. Am. Chem. Soc. 2006, 128, 2528.
We were delighted to find that when N-acetylindole (4a) was treated
with [Ph-I-Ph]OTf (2b) the 2-arylindole 5a was obtained as a 9:1
ratio (91% overall yield) in favor of the C2 isomer (Table 4, entry 1).
In this case, the lower reactivity of the N-acetylindole means that the
temperature of the reaction needs to be increased to 60 °C. Encouraged
by these results, we explored the scope of this C2-arylation process.
A range of electronically diverse indoles worked well in this process,
delivering the C2-arylated products in excellent yield (Table 4).
(6) Cacchi, S.; Fabrizi, G. Chem. ReV. 2005, 105, 2873.
(7) (a) Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem.
Soc. 2006, 128, 4972. (b) Yang, S.; Sun, C.; Fang, Z.; Li, B.; Li, Y.; Shi,
Z. Angew. Chem., Int. Ed. 2008, 47, 1473. (c) Lebrasseur, N.; Larrosa, I.
J. Am. Chem. Soc. 2008, 130, 2926. (d) Lane, B. S.; Brown, M. A.; Sames,
D. J. Am. Chem. Soc. 2005, 127, 8050. (e) Wang, X.; Lane, B. S.; Sames,
D. J. Am. Chem. Soc. 2005, 127, 4996. (f) Wang, X.; Gribkov, D. V.;
Sames, D. J. Org. Chem. 2007, 72, 1476. (g) Stuart, D. R.; Villemure, E.;
Fagnou, K. J. Am. Chem. Soc. 2007, 129, 12072. (h) Stuart, D. R.; Fagnou,
K. Science 2007, 316, 1172. (i) Dwight, T. A.; Rue, N. R.; Charyk, D.;
Josselyn, R.; DeBoef, B. Org. Lett. 2007, 9, 3137. (j) Zhang, Z.; Hu, Z.;
Yu, Z.; Lei, P.; Chi, H.; Wang, Y.; He, R. Tetrahedron Lett. 2007, 48,
2415.
The transferring aryl group could also be varied, using a range of
[TRIP-I-Ar]OTf salts, enabling a selection of 2-arylindoles to be
delivered in high yields (Table 5). In particular, the halogen-containing
motifs (F, Cl, Br, and I, entries 3-7) work well in the C2 selective
arylation, again highlighting the potential of this process in combination
with further conventional cross-coupling transformations.
(8) (a) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 6968. (b) Chen, X.; Hao,
X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790. (c)
Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 12404. (d) Do, H.-
Q.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 1128. (e) Brasche, G.;
Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 1932. (f) Hamada, T.;
Ye, X.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 833.
(9) (a) Barton, D. H. R.; Finet, J.-P.; Khamsi, J. Tetrahedron Lett. 1988, 29,
1115. (b) Barton, D. H. R.; Finet, J.-P.; Khamsi, J. Tetrahedron Lett. 1987,
28, 887. (c) Barton, D. H. R.; Finet, J.-P.; Giannotti, C.; Halley, F. J. Chem.
Soc., Perkin Trans. 1987, 241.
In summary, we have developed a new site-selective Cu(II)-
catalyzed C-H bond functionalization process that can selectively
arylate indoles at either the C3 or C2 position under mild conditions.
The scope of the arylation process is broad and tolerates many
functionalities on both the indole and the aryl unit. The mechanism of
the arylation reaction is proposed to proceed via a Cu(III)-aryl species
that undergoes initial electrophilic addition at the C3 position of the
indole motif. We speculate that site of indole arylation arises through
a migration of the Cu(III)-aryl group from C3 to C2, and this can be
controlled by the nature of the group on the nitrogen atom. Free (NH)-
and N-alkylindoles deliver the C3-arylated product, whereas N-
acetylindoles afford the C2 isomer, with high yield and selectivity.
We are currently exploring aspects of the reaction mechanism, in
(10) Deprez, N. R.; Sanford, M. S. Inorg. Chem. 2007, 46, 1924.
(11) For a Cu-mediated enolate-indole coupling reaction, see: Richter, J. M.;
Whitefield, B. W.; Maimone, T. J.; Lin, D. W.; Castroviejo, M. P.; Baran,
P. S. J. Am. Chem. Soc. 2007, 129, 12857.
(12) See Supporting Information for details.
(13) Bielawski, M.; Zhu, M.; Olofsson, B. AdV. Synth. Catal. 2007, 349, 2610.
(14) (a) Lockhart, T. P. J. Am. Chem. Soc. 1983, 105, 1940. (b) Balogh-
Hergovich, E.; Speier, G. J. Chem. Soc., Perkin Trans. 1986, 2305. (c)
Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400.
(15) Although we cannot rule out a radical mechanism for this process, we
observed that, in the presence of a radical inhibitor, 1,1-diphenylethylene,
the reaction was not affected.
(16) Acid additives and other counterions (in 2) reduce the C3 to C2 selectivity.
See Supporting Information for details.
JA801767S
9
8174 J. AM. CHEM. SOC. VOL. 130, NO. 26, 2008