C O M M U N I C A T I O N S
Table 3. C-H Functionalization of 1 via Decarbonylation of 2a or
2c and C-H Bond Activationa
Scheme 1. Proposed Mechanism
C-H activation via intramolecular ortho-chelating assistance in the
presence of a base. The desired product 3 is then produced by reductive
elimination of 6. Such a proton abstraction mechanism is plausible to
explain functionalization of the aromatic C-H bonds by acid
chlorides.3e,15
In summary, efficient regioselective functionalization of aromatic
C-H bonds has been realized by Rh(I) catalysis using acid chlorides
as the coupling partners via decarbonylative C-H activation with arene
or N-heteroaromatic substrates under phosphine-free conditions.
Exploration of the substrate scope and reaction mechanism will be
further investigated.
Acknowledgment. We are grateful to the National Natural Science
Foundation of China (Grant Nos. 20501018, 20772124) for financial
support of this research.
a Reaction conditions: 1, 0.5 mmol; 4A MS; xylene, 3 mL; 145 °C,
16 h. (A) [Rh(COD)Cl]2, 10 mol %; Na2CO3, 3 equiv; 2a or 2c, 4.0
equiv. (B) [Rh(COD)Cl]2, 5 mol%; Na2CO3, 2 equiv; 2a, 1.5 equiv.
b isolated yields. c R
e [Rh(COD)Cl]2, 10 mol %.
)
Ph (2a). d R
)
4-MeOC6H4 (2c).
Supporting Information Available: Experimental procedures, ana-
lytical data, and copies of NMR spectra. This material is available free of
Styryl-functionalized product 3h was obtained in 74% yield through
the decarbonylation of trans-cinnamoyl chloride 2h and C-H bond
activation (entry 8). It is worth noting that arene 1a was decarbony-
latively benzylated by phenylacetyl chloride 2i in 37% yield (entry
9). Interestingly, acid chloride PhCOCOCl (2j) was efficiently coupled
with 1a, producing 3a in 94% yield through double carbonyl
elimination (entry 10).
References
(1) For recent reviews, see: (a) Dyker, G. Angew. Chem, Int. Ed. 1999, 38,
1698. (b) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. ReV. 2002, 102, 1731.
(c) Kakiuchi, F.; Chatani, N. AdV. Synth. Catal. 2003, 345, 1077. (d)
Alberico, D.; Scott, M. E.; Lautens, M. Chem. ReV. 2007, 107, 174.
(2) (a) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2007, 9, 1407. (b) Chiong,
H. A.; Pham, Q.-N.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 9879. (c)
Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.; Saunders,
L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007, 129, 3510. (d) Cai, G. X.; Fu,
Y.; Li, Y. Z.; Wan, X. B.; Shi, Z. J. J. Am. Chem. Soc. 2007, 129, 7666.
(3) (a) Kametani, Y.; Satoh, T.; Miura, M.; Nomura, M. Tetrahedron Lett.
2000, 41, 2655. (b) Oi, S.; Fukita, S.; Hirata, N.; Watanuki, N.; Miyano,
S.; Inoue, Y. Org. Lett. 2001, 3, 2579. (c) Daugulis, O.; Zaitsev, V. G.
Angew. Chem., Int. Ed. 2005, 44, 4046. (d) Ackermann, L.; Althammer,
A.; Born, R. Angew. Chem., Int. Ed. 2006, 45, 2619. (e) Ozdemir, I.; Demir,
S.; Cetinkaya, B.; Gourlaouen, C.; Maseras, F.; Bruneau, C.; Dixneuf, P. H.
J. Am. Chem. Soc. 2008, 130, 1156. (f) Larivee, A.; Mousseau, J. J.;
Charette, A. B. J. Am. Chem. Soc. 2008, 130, 52. (g) Campeau, L.-C.;
Schipper, D. J.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 3266.
(4) (a) Oi, S.; Fukita, S.; Inoue, Y. Chem. Commun. 1998, 2439. (b) Kakiuchi,
F.; Kan, S.; Igi, K.; Chatani, N.; Murai, S. J. Am. Chem. Soc. 2003, 125,
1698. (c) Chen, X.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006,
128, 12634. (d) Shi, Z. J.; Li, B. J.; Wan, X. B.; Cheng, J.; Fang, Z.; Cao,
B.; Qin, C. M.; Wang, Y. Angew. Chem., Int Ed. 2007, 46, 1. (e) Vogler,
T.; Studer, A. Org. Lett. 2008, 10, 129. (f) Norinder, J.; Matsumoto, A.;
Yoshikai, N.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 5858.
(5) Yang, S. D.; Li, B. J.; Wan, X. B.; Shi, Z. J. J. Am. Chem. Soc. 2007, 129,
6066.
The scope of N-heteroaromatic substrates was explored. In an initial
study, treatment of 2-phenylpyridine (1b) with 1.5 equiv of 2a produced
the mixture of monoarylated and double arylated products under the
same conditions as shown in Table 2, and the molar ratio of double to
monoarylation products was increased as the amount of 2a was
increased. Thus, 1b was reacted with 4 equiv of 2a in the presence of
3 equiv of Na2CO3 at 145 °C for 20 h; a mixture of double and
monoarylation products (86:14) was obtained with 93% conversion
for 1b. Presumably, the catalyst was decomposed during the reaction,
leading to the incomplete conversion of 1b. With an increase of the
catalyst loading to 10 mol %, as expected, >99% conversion was
reached for 1b and the 97:3 mixture of double and monoarylation
products were formed. Eventually, the double arylation product 3j was
isolated in 72% yield (Table 3, entry 1). The methodology was applied
to the C-H functionalization of 1c and 1d, affording the corresponding
double arylation products 3k-m in 66-76% yields (entries 2-4). It
should be noted that the monoarylation product, that is, 3n, was always
generated as the major product from the arylation of 1e with 2a even
if 4 equiv of 2a was used in the reaction (entry 5), which is attributed
to the steric hindrance from the 3-methyl substituent. There is only
one reactive site available in 1f or 1g that their C-H functionalization
with 2a only afforded the monoarylation products 3o and 3p (entries
6 and 7). Less reactive N-heterocycles 1h and 1i also underwent the
arylation reactions with 2a to afford the desired products (entries 8
and 9), respectively.
(6) Matsuura, Y.; Tamura, M.; Kochi, T.; Sato, M.; Chatani, N.; Kakiuchi, F.
J. Am. Chem. Soc. 2007, 129, 9858.
(7) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am. Chem.
Soc. 2005, 127, 7330.
(8) Zaitsev, V. G.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 4156.
(9) (a) Lim, S.-G.; Ahn, J.-A.; Jun, C.-H. Org. Lett. 2004, 6, 4687. (b) Lewis,
J. C.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2007, 129, 5332.
(10) Nakao, Y.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2008, 130, 2448.
(11) Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 11904.
(12) (a) Zhang, Y. H.; Feng, J. Q.; Li, C.-J. J. Am. Chem. Soc. 2008, 130, 2900.
(b) Yu, W.-Y.; Sit, W. N.; Lai, K.-M.; Zhou, Z. Y.; Chan, A. S. C. J. Am.
Chem. Soc. 2008, 130, 3304.
(13) (a) Tsuji, J.; Ohno, K. J. Am. Chem. Soc. 1966, 88, 3452. (b) Tsuji, J.;
Ohno, K. J. Am. Chem. Soc. 1968, 90, 94.
(14) (a) Kokubo, K.; Matsumasa, K.; Miura, M.; Nomura, M. J. Org. Chem.
1996, 61, 6941. (b) Sugihara, T.; Satoh, T.; Miura, M.; Nomura, M. Angew.
Chem., Int. Ed. 2003, 42, 4672. (c) Sugihara, T.; Satoh, T.; Miura, M.
Tetrahedron Lett. 2005, 46, 8269.
A posssible mechanism is proposed in Scheme 1. Acid chloride 2
is oxidatively added to the Rh(I) species to form an aroyl-chlorometal
complex [RCORh(III)Cl2] (4) which undergoes decarbonylation to
form aryl-chlororhodium(III) intermediate 5 at elevated temperature.
Intermediate 5 reacts with arene 1 to form intermediate complex 6 by
(15) Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am. Chem. Soc.
2006, 128, 8754.
JA803154H
9
J. AM. CHEM. SOC. VOL. 130, NO. 26, 2008 8137