C O M M U N I C A T I O N S
Table 1. One-Pot Synthesis of Highly Functionalized Pyridines
Uniform conditions unless otherwise noted: 2 equiv of diazo compound, 2 mol % of Rh2(OAc)4, 30 min diazo compound addition at 60 °C, then
reflux for 4 h, then rt DDQ addition. a With 0.5 mol % of Rh2(OAc)4 used. b With 4 equiv of diazo compound used. c Diazo compound added at reflux.
d With 3 equiv of diazo compound used. e Refluxed overnight after diazo compound addition.
illustrated in products 15r-15y. A protected 2-aminopyridine 15z
was also synthesized from a protected 3-aminoisoxazole. The
References
(1) (a) Joule, J. A.; Mills, K. Heterocyclic Chemistry, 4th ed.; Blackwell: Oxford,
structure of pyridine 15b has been unambiguously determined by
UK, 2000. (b) Triggle, D. J. Cell. Mol. Neurobiol. 2003, 23, 293–303.
X-ray crystallography.9
(2) For a thorough review of the history, applications, and synthesis of pyridine
derivatives, see: Henry, G. D. Tetrahedron 2004, 60, 6043–6061.
(3) For recent syntheses of highly substituted pyridines, see: (a) Colby, D. A.;
Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 3645–3651.
(b) Barluenga, J.; Ferna´ndez-Rodr´ıguez, M. A.; Garc´ıa-Garc´ıa, P.; Aguilar,
E. J. Am. Chem. Soc. 2008, 130, 2764–2765. (c) Parthasarathy, K.;
Jeganmohan, M.; Cheng, C.-H. Org. Lett. 2008, 10, 325–328. (d) Dash, J.;
Lechel, T.; Reissig, H.-U. Org. Lett. 2007, 9, 5541–5544. (e) Movassaghi,
M.; Hill, M. D.; Ahmad, O. K. J. Am. Chem. Soc. 2007, 129, 10096–10097.
(f) Trost, B. M.; Gutierrez, A. C. Org. Lett. 2007, 9, 1473–1476. (g) Fletcher,
In summary, an efficient one-pot procedure for the synthesis of
highly functionalized pyridines and 1,4-dihydropyridines has been
developed. The reaction proceeds via an initial carbenoid induced
ring expansion of isoxazoles followed by a rearrangement/tau-
tomerization/oxidation sequence. A wide variety of 3,5-disubstituted
isoxazoles and vinyldiazomethanes are compatible with this sequence.
M. D.; Hurst, T. E.; Miles, T. J.; Moody, C. J. Tetrahedron 2006, 62, 5454–
5463. (h) Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 4592–
4593. (i) Tanaka, K.; Suzuki, N.; Nishida, G. Eur. J. Org. Chem. 2006,
3917–3922. (j) Yamamoto, Y.; Kinpara, K.; Ogawa, R.; Nishiyama, H.; Itoh,
K. Chem.—Eur. J. 2006, 12, 5618–5631. (k) McCormick, M. M.; Duong,
H. A.; Zuo, G.; Louie, J. J. Am. Chem. Soc. 2005, 127, 5030–5031.
(4) (a) Sausins, A.; Duburs, G. Heterocycles 1988, 27, 269–289. (b) Stout, D. M.;
Meyers, A. I. Chem. ReV. 1982, 82, 223–243.
(5) Manning, J. R.; Davies, H. M. L. Tetrahedron 2008, doi:10.1016/
j.tet.2008.03.010.
Acknowledgment. The National Institutes of Health (GM080337)
is gratefully acknowledged. J.R.M. thanks the National Institutes
of Health for a Ruth L. Kirschstein predoctoral fellowship
(DA019287). We thank Mateusz Pitak and Milan Gembicky for
the X-ray crystallographic analysis.
(6) For other recent examples of rhodium carbenoid reactions involving ylides,
see: (a) Liao, M.; Peng, L.; Wang, J. Org. Lett. 2008, 10, 693–696. (b) Padwa,
A. J. Organomet. Chem. 2005, 690, 5533–5540. (c) Yan, M.; Jacobsen, N.;
Hu, W.; Gronenberg, L. S.; Doyle, M. P.; Colyer, J. T.; Bykowski, D. Angew.
Chem., Int. Ed. 2004, 43, 6713–6716.
(7) Davies, H. M. L.; Clark, D. M.; Smith, T. K. Tetrahedron Lett. 1985, 26,
5659–5662.
(8) Hansen, T. V.; Wu, P.; Fokin, V. V. J. Org. Chem. 2005, 70, 7761–7764.
(9) The X-ray crystallographic data have been submitted to the Cambridge
Structure Database: Pitak, M.; Gembicky, M.; Coppens, P. Private Com-
munication, 2008, CCDC 675737.
Supporting Information Available: Full experimental data for the
compounds described in this paper; X-ray crystallographic file in CIF
format. This material is available free of charge via the Internet at http://
pubs.acs.org.
JA803139K
9
J. AM. CHEM. SOC. VOL. 130, NO. 27, 2008 8603