3120
S. N. Georgiades, J. Clardy / Bioorg. Med. Chem. Lett. 18 (2008) 3117–3121
OH
OCH3
O
helpful discussions and preliminary biological studies
on the library, Dr. Li Lai (formerly HMS) for assistance
with solid-phase handling, and Dr. Ralph Mazitschek
(Broad Institute of MIT and Harvard) and Dr. Jared
Shaw (formerly Broad Institute) for useful suggestions.
OCH3
O
RCO2Suc
R=
68
69
70
71
72
73
74
75
76
77
78
79
80
n-C5H11
n-C6H13
n-C7H15
n-C8H17
n-C9H19
n-C10H21
c
a
b
66
65
64
OTBDMS
O
OTBDMS
O
OH
n-C11 23
n-C12 25
n-C13 27
n-C14 29
n-C15 31
n-C16 33
n-C17 35
H
H
H
O
O
R
O
R
H
Supplementary data
H
H
H
f
d-e
H
Detailed experimental procedures and spectroscopic
data associated with this article can be found in the on-
67
O
OTBDMS
OTBDMS
OH
O
26 Examples
68aE-80aE
68aZ-80aZ
26 Examples
68bE-80bE
68bZ-80bZ
N
R
O
O
RCO2Suc
References and notes
(E)/(Z)= ~2/1
1. (a) Clardy, J.; Fischbach, M. A.; Walsh, C. T. Nat.
Biotechnol. 2006, 24, 1541; (b) Clardy, J.; Walsh, C.
Nature 2004, 432, 829; (c) Koehn, F. E.; Carter, G. T. Nat.
Rev. Drug Discov. 2005, 4, 206; (d) Butler, M. S. J. Nat.
Prod. 2004, 67, 2141; (e) Leeds, J. A.; Schmitt, E. K.;
Krastel, P. Expert Opin. Investig. Drugs 2006, 15, 211; (f)
Pelaez, F. Biochem. Pharmacol. 2006, 71, 981.
Scheme 4. Solution-phase synthesis of long chain N-acyl enol esters.
Reagents and conditions: (a) TBDMSCl/imidazole/DMF/rt/12 h/
100%; (b) LiAlH4/THF/ꢀ78 °C/1 h/94%; (c) IBX/DMSO/rt/4 h/93%;
(d) KHMDS/toluene/THF/0 °C/5 min; (e) THF/RCO2Suc (68–80)/rt/
30 min/30–40%; (f) HF/pyridine/rt/6 h/85–90%.
2. (a) Torsvik, V.; Salte, K.; Sørheim, R.; Goksøyr, J. Appl.
Environ. Microbiol. 1990, 56, 776; (b) Torsvik, V.;
Goksøyr, J.; Daae, F. L. Appl. Environ. Microbiol. 1990,
56, 782; (c) Ward, D. M.; Weller, R.; Bateson, M. M.
Nature 1990, 345, 63; (d) Stackebrandt, E.; Liesack, W.;
Goebel, B. M. FASEB J. 1993, 7, 232; (e) Amann, R. I.;
Ludwig, W.; Schleifer, K. H. Microbiol. Rev. 1995, 59,
143; (f) Hugenholtz, P.; Goebel, B. M.; Pace, N. R.
J. Bacteriol. 1998, 180, 4765.
3. (a) Wang, G.-Y.-S.; Graziani, E.; Waters, B.; Pan, W.; Li,
X.; McDermott, J.; Meurer, G.; Saxena, G.; Andersen, R.
J.; Davies, J. Org. Lett. 2000, 2, 2401; (b) Brady, S. F.;
Clardy, J. J. Am. Chem. Soc. 2000, 122, 12903; (c)
MacNeil, I. A.; Tiong, C. L.; Minor, C.; August, P. R.;
Grossman, T. H.; Loiacono, K. A.; Lynch, B. A.; Phillips,
T.; Narula, S.; Sundaramoorthi, R.; Tyler, A.; Aldredge,
T.; Long, H.; Gilman, M.; Holt, D.; Osburne, M. S. J.
Mol. Microbiol. Biotechnol. 2001, 3, 301.
4. A similar approach has been used for enzyme catalyst
discovery: DeSantis, G.; Zhu, Z.; Greenberg, W. A.;
Wong, K.; Chaplin, J.; Hanson, S. R.; Farwell, B.;
Nicholson, L. W.; Rand, C. L.; Weiner, D. P.; Robertson,
D. E.; Burk, M. J. J. Am. Chem. Soc. 2002, 124, 9024.
5. (a) Brady, S. F.; Chao, C. J.; Clardy, J. J. Am. Chem. Soc.
2002, 124, 9968; (b) Brady, S. F.; Chao, C. J.; Clardy, J.
J. Appl. Environ. Microbiol. 2004, 70, 6865; (c) Brady, S.
F.; Clardy, J. J. Nat. Prod. 2004, 67, 1283; (d) Brady, S. F.;
Clardy, J. Org. Lett. 2005, 7, 3613.
with a previous report from our laboratory for a similar
system.16 Under the specific reaction conditions em-
ployed here, moderate selectivity for the trans enolate
(precursor to the only isomeric product present in the
natural extract from the eDNA clone) was observed.
The enolates were trapped with saturated long chain
N-hydroxysuccinimide esters (68–80).17 LC–MS analysis
of an aliquot from each reaction revealed in all cases a
mixture of products with the same mass, that included
(E)- and (Z)-enol esters as well as what appeared to be
carbon acylation products. Partial purification of the
crude products afforded inseparable mixtures of (E)-
and (Z)-enol esters (68aE–80aE and 68aZ–80aZ), for
which 1H NMR indicated a ratio of approximately
2:1. The ratio was independent of acid chain length
and reflects the thermodynamic preference for the trans
enolate. The (E)/(Z) mixtures were resolved after HF re-
moval of the TBDMS protecting group in pyridine,
which proceeded at 85–90% yield. Thirteen deprotected
(E)-enol esters (68bE–80bE) and 13 (Z)-enol esters
(68bZ–80bZ) were obtained in pure form.
In summary, solid- and solution-phase methods are de-
scribed for the preparation of synthetic libraries of tyro-
sine-derived bacterial metabolites (131 compounds have
been delivered), resembling small molecules isolated
from heterologous expression of eDNA in E. coli. Preli-
minary biological studies on library members have
shown antibiotic activity against Bacillus subtilis and
moderate inhibitory potential of Pseudomonas aerugin-
osa biofilm formation. Additional assays are planned
and will be reported elsewhere in due course.
6. (a) Van Wagoner, R. M.; Clardy, J. Structure 2006, 14,
1425; Commentary by (b) Churchill, M. E. A. Structure
2006, 14, 1342.
7. For recent reviews on AHLs and bacterial signalling, see: (a)
Waters, C. M.; Bassler, B. L. Annu. Rev. Cell Dev. Biol. 2005,
21, 319; (b) Bassler, B. L.; Losick, R. Cell 2006, 125, 237.
8. Preparation of this resin is described in: Tallarico, J. A.;
Depew, K. M.; Pelish, H. E.; Westwood, N. J.; Lindsley,
C. W.; Shair, M. D.; Schreiber, S. L.; Foley, M. A.
J. Comb. Chem. 2001, 3, 312.
9. Substrates 2L and 2D were prepared from commercial
Fmoc-tyrosine following the method of: Jensen, K. J.;
Meldal, M.; Bock, K. J. Chem. Soc. Perkin Trans. 1 1993,
17, 2119.
10. The loading in this step was typically 1.3–1.4 mmol of
substrate per gram of resin, approximately equal to the
Acknowledgments
We gratefully acknowledge the NIH for funding of this
project (CA24487 to J.C.). We thank Dr. Sean Brady
(formerly HMS) and Dr. Lauren Junker (HMS) for