Organic Letters
Letter
(3) (a) Gilman, H.; Zuech, E. A. Selective Reactions of the Silicon-
Hydrogen Group with Grignard Reagents. The Preparation of Some
Unsymmetrical Silane Derivatives. J. Am. Chem. Soc. 1959, 81, 5925−
5928. (b) Tsuji, J.; Hara, M.; Ohno, K. Palladium Catalyzed
Hydrosilylation Of Monoenes And Conjugated Dienes. Tetrahedron
1974, 30, 2143−2146. (c) Seyferth, D.; Wursthorn, K. R.;
Mammarella, R. E. A General Route to Terminally Substituted Allylic
Derivatives of Silicon and Tin. Preparation of Allylic Lithium
Reagents. J. Org. Chem. 1977, 42, 3104−3106. (d) Fleming, I.;
Marchi, D., Jr. A New Synthesis of Allylsilanes. Synthesis 1981, 1981,
560−561. (e) Fleming, I.; Higgins, D.; Lawrence, N. J.; Thomas, A. P.
A Regioselective and Stereospecific Synthesis of Allylsilanes from
Secondary Allylic Alcohol Derivatives. J. Chem. Soc., Perkin Trans. 1
1992, 3331−3349. For reviews, see: (f) Sarkar, T. K. Methods for the
Synthesis of Allylsilanes. Part 1. Synthesis 1990, 1990, 969−983.
(g) Sarkar, T. K. Methods for the Synthesis of Allylsilanes. Part 2.
Synthesis 1990, 1990, 1101−1111.
(4) (a) Lipshutz, B. H.; Sclafani, J. A.; Takanami, T. Silyl Cuprate
Couplings: Less Silicon, Accelerated, Yet Catalytic in Copper. J. Am.
Chem. Soc. 1998, 120, 4021−4022. (b) Oestreich, M.; Auer, G.
Practical Synthesis of Allylic Silanes from Allylic Esters and
Carbamates by Stereoselective Copper-Catalyzed Allylic Substitution
Reactions. Adv. Synth. Catal. 2005, 347, 637−640. (c) Schmidtmann,
E. S.; Oestreich, M. Mechanistic insight into copper-catalysed allylic
substitutions with bis(triorganosilyl) zincs. Enantiospecific prepara-
tion of α-chiral silanes. Chem. Commun. 2006, 3643−3645. (d) Vyas,
D. J.; Oestreich, M. Expedient access to branched allylic silanes by
copper-catalysed allylic substitution of linear allylic halides. Chem.
Commun. 2010, 46, 568−570. (e) Hensel, A.; Oestreich, M.
Asymmetric Catalysis with Silicon-Based Cuprates: Enantio- and
Regioselective Allylic Substitution of Linear Precursors. Chem. - Eur. J.
2015, 21, 9062−9065.
Hartmann, E.; Mewald, M. Activation of the Si−B Interelement Bond:
Mechanism, Catalysis, and Synthesis. Chem. Rev. 2013, 113, 402−441.
(8) For reviews, see: (a) Sundararaju, B.; Achard, M.; Bruneau, C.
Transition metal catalyzed nucleophilic allylic substitution: activation
of allylic alcohols via π-allylic species. Chem. Soc. Rev. 2012, 41,
4467−4483. (b) Butt, N. A.; Zhang, W. Transition metal-catalyzed
allylic substitution reactions with unactivated allylic substrates. Chem.
Soc. Rev. 2015, 44, 7929−7967.
(9) Just before our submission, a Ni-catalyzed silylation of allylic
alcohols with R3SiZnCl to linear allylic silanes was reported; see:
Yang, B.; Wang, Z.-X. Synthesis of Allylsilanes via Nickel-Catalyzed
Cross-Coupling of Silicon Nucleophiles with Allyl Alcohols. Org. Lett.
2019, 21, 7965−7969.
(10) For the synthesis of branched allylic silanes by copper catalysis,
see ref 4d,e and ref 7a−d.
(11) For example: (a) Tsukamoto, H.; Sato, M.; Kondo, Y.
Palladium(0)-catalyzed direct cross-coupling reaction of allyl alcohols
with aryl- and vinyl-boronic acids. Chem. Commun. 2004, 1200−1201.
(b) Tsukamoto, H.; Uchiyama, T.; Suzuki, T.; Kondo, Y. Palladium-
(0)-catalyzed direct cross-coupling reaction of allylic alcohols with
aryl- and alkenylboronic acids. Org. Biomol. Chem. 2008, 6, 3005−
3013.
(12) For Ni-catalyzed silylation reactions involving CuF2: (a) Zarate,
C.; Martin, R. A Mild Ni/Cu-Catalyzed Silylation via C−O Cleavage.
J. Am. Chem. Soc. 2014, 136, 2236−2239. (b) Guo, L.;
Chatupheeraphat, A.; Rueping, M. Decarbonylative Silylation of
Esters by Combined Nickel and Copper Catalysis for the Synthesis of
Arylsilanes and Heteroarylsilanes. Angew. Chem., Int. Ed. 2016, 55,
11810−11813. (c) Pu, X.; Hu, J.; Zhao, Y.; Shi, Z. Nickel-Catalyzed
Decarbonylative Borylation and Silylation of Esters. ACS Catal. 2016,
́
6, 6692−6698. (d) Somerville, R. J.; Hale, L. V. A.; Gomez-Bengoa,
2
́
E.; Bures, J.; Martin, R. Intermediacy of Ni−Ni Species in sp C−O
(5) (a) Tsuji, Y.; Kajita, S.; Isobe, S.; Funato, M. Palladium-
Catalyzed Silylation of Allylic Acetates with Hexamethyldisilane or
(Trimethylsilyl)tributylstannane. J. Org. Chem. 1993, 58, 3607−3608.
(b) Tsuji, Y.; Funato, M.; Ozawa, M.; Ogiyama, H.; Kajita, S.;
Kawamura, T. Silylation of Allylic Trifluoroacetates and Acetates
Using Organodisilanes Catalyzed by Palladium Complex. J. Org.
Chem. 1996, 61, 5779−5787. (c) Moser, R.; Nishikata, T.; Lipshutz,
B. H. Pd-Catalyzed Synthesis of Allylic Silanes from Allylic Ethers.
Bond Cleavage of Aryl Esters: Relevance in Catalytic C−Si Bond
Formation. J. Am. Chem. Soc. 2018, 140, 8771−8780. (e) Wang, X.;
Wang, Z.; Nishihara, Y. Nickel/copper-cocatalyzed decarbonylative
silylation of acyl fluorides. Chem. Commun. 2019, 55, 10507−10510.
(13) For CuF2-promoted coupling reactions of aryl silanes, see:
(a) Shi, W.-J.; Zhao, H.-W.; Wang, Y.; Cao, Z.-C.; Zhang, L.-S.; Yu,
D.-G.; Shi, Z.-J. Nickel- or Iron-Catalyzed Cross-Coupling of Aryl
Carbamates with Arylsilanes. Adv. Synth. Catal. 2016, 358, 2410−
2416. For LCuF or in situ generated CuF promoted coupling
reactions of aryl silanes, see: (b) Herron, J. R.; Ball, Z. T. Synthesis
and Reactivity of Functionalized Arylcopper Compounds by Trans-
metalation of Organosilanes. J. Am. Chem. Soc. 2008, 130, 16486−
16487. (c) Gurung, S. K.; Thapa, S.; Vangala, A. S.; Giri, R. Copper-
Catalyzed Hiyama Coupling of (Hetero)aryltriethoxysilanes with
(Hetero)aryl Iodides. Org. Lett. 2013, 15, 5378−5381. For LCuF
promoted addition of a silylboronate reagent to aldehydes, see:
́
Org. Lett. 2010, 12, 28−31. (d) Selander, N.; Paasch, J. R.; Szabo, K. J.
Palladium-Catalyzed Allylic C−OH Functionalization for Efficient
Synthesis of Functionalized Allylsilanes. J. Am. Chem. Soc. 2011, 133,
́
409−411. (e) Larsson, J. M.; Szabo, K. J. Mechanistic Investigation of
the Palladium-Catalyzed Synthesis of Allylic Silanes and Boronates
from Allylic Alcohols. J. Am. Chem. Soc. 2013, 135, 443−455. (f) Ito,
H.; Horita, Y.; Sawamura, M. Copper(I)-Catalyzed Allylic Sub-
stitution of Silyl Nucleophiles through Si-Si Bond Activation. Adv.
Synth. Catal. 2012, 354, 813−817.
́
(d) Cirriez, V.; Rasson, C.; Hermant, T.; Petrignet, J.; Alvarez, J. D.;
(6) Bourque, L. E.; Cleary, P. A.; Woerpel, K. A. Metal-Catalyzed
Silylene Insertions of Allylic Ethers: Stereoselective Formation of
Chiral Allylic Silanes. J. Am. Chem. Soc. 2007, 129, 12602−12603.
(7) (a) Vyas, D. J.; Oestreich, M. Copper-Catalyzed Si-B Bond
Activation in Branched-Selective Allylic Substitution of Linear Allylic
Chlorides. Angew. Chem., Int. Ed. 2010, 49, 8513−8515. (b) Hazra, C.
K.; Irran, E.; Oestreich, M. Regio- and Diastereoselective Copper(I)-
Catalyzed Allylic Substitution of δ-Hydroxy Allylic Chlorides by a
Silicon Nucleophile. Eur. J. Org. Chem. 2013, 2013, 4903−4908.
(c) Delvos, L. B.; Vyas, D. J.; Oestreich, M. Asymmetric Synthesis of
α-Chiral Allylic Silanes by Enantioconvergent γ-Selective Copper(I)-
Catalyzed Allylic Silylation. Angew. Chem., Int. Ed. 2013, 52, 4650−
4653. (d) Takeda, M.; Shintani, R.; Hayashi, T. Enantioselective
Synthesis of α-Tri- and α-Tetrasubstituted Allylsilanes by Copper-
Catalyzed Asymmetric Allylic Substitution of Allyl Phosphates with
Silylboronates. J. Org. Chem. 2013, 78, 5007−5017. (e) Xuan, Q.-Q.;
Zhong, N.-J.; Ren, C.-L.; Liu, L.; Wang, D.; Chen, Y.-J.; Li, C.-J.
Cu(II)-Catalyzed Allylic Silylation of Morita−Baylis−Hillman Alco-
hols via Dual Activation of Si−B Bond and Hydroxyl Group. J. Org.
Chem. 2013, 78, 11076−11081. For reviews, see: (f) Oestreich, M.;
Robeyns, K.; Riant, O. Copper-Catalyzed Addition of Nucleophilic
Silicon to Aldehydes. Angew. Chem., Int. Ed. 2013, 52, 1785−1788.
(15) Romero, E. A.; Peltier, J. L.; Jazzar, R.; Bertrand, G. Catalyst-
free dehydrocoupling of amines, alcohols, and thiols with pinacol
borane and 9-borabicyclononane (9-BBN). Chem. Commun. 2016, 52,
10563−10565.
(16) For postulated formation of Cu−Si species by in situ formed
CuOR species with silylboronate reagent, see: (a) Vyas, D. J.; Hazra,
C. K.; Oestreich, M. Copper(I)-Catalyzed Regioselective Propargylic
Substitution Involving Si−B Bond Activation. Org. Lett. 2011, 13,
4462−4465. (b) See ref 7a. For the formation of IPrCu-SiMe2Ph
through the reaction of IPrCuOtBu with PhMe2SiBpin, see:
(c) Kleeberg, C.; Feldmann, E.; Hartmann, E.; Vyas, D. J.;
Oestreich, M. Copper-Catalyzed 1,2-Addition of Nucleophilic Silicon
to Aldehydes: Mechanistic Insight and Catalytic Systems. Chem. - Eur.
J. 2011, 17, 13538−13543. (d) Plotzitzka, J.; Kleeberg, C.
[(NHC)CuI−ER3] Complexes (ER3 = SiMe2Ph, SiPh3, SnMe3):
From Linear, Mononuclear Complexes to Polynuclear Complexes
E
Org. Lett. XXXX, XXX, XXX−XXX