Bio-orthogonal Phosphatidylserine Conjugates for Delivery and
Imaging Applications
Andrew J. Lampkins, Edward J. O’Neil, and Bradley D. Smith*
Department of Chemistry and Biochemistry and Walther Cancer Research Center, 251 Nieuwland Science
Hall, UniVersity of Notre Dame, Notre Dame, Indiana 46556
ReceiVed May 23, 2008
The syntheses of phosphatidylserine (PS) conjugates are described, including fluorescent derivatives for
potential cellular delivery and bioimaging applications. Installation of terminal functional groups (amine,
thiol, or alkyne) onto the sn-2 chain provides reactive sites for bio-orthogonal conjugation of cargo with
suitably protected PS derivatives. An amine-containing PS forms amide bonds with peptidic cargo, a
thiol derivative is designed for conjugation to cargo that contain R-halo carbonyls or Michael acceptors,
and the terminal alkyne PS analogue permits “click” conjugation with any azide-tagged molecule. This
latter conjugation method is quite versatile as it can be performed without PS headgroup protection, in
aqueous media, and with acid-labile cargo.
Introduction
that vitamin receptors are used to deliver conjugates of folate,
B12, biotin, etc.6
Phosphatidylserine (PS) is emerging as a biologically im-
portant phospholipid that is associated with a wide range of
cell signaling events.1 There is good evidence that the plasma
membranes of most mammalian cells contain an active transport
system that pumps PS to the inner membrane surface.2 There
is also strong evidence that macrophages can engulf cells,3
lipososomes,4 and viruses5 that have surface-exposed PS. We
wish to determine if these endogenous PS transport systems
can deliver PS conjugates into cells, and whether they can be
used for delivery and imaging applications in the same way
This report describes our entry into this project, that is, the
preparation of appropriate PS conjugates for cell delivery
experiments. We decided that the cargo should not be attached
to the PS headgroup because this will likely interfere with the
molecular recognition, and that a more prudent point of
attachment was the terminus of one of the phospholipid acyl
chains.7,8 Therefore, the synthetic challenge was to devise mild
and general methods of attaching various types of molecular
cargo to the end of a PS acyl chain. The methods had to be
compatible with the PS headgroup, which contains both nu-
cleophilic amine and electrophilic carboxyl sites.
(6) (a) Lu, Y. J.; Low, P. S. AdV. Drug DeliVery ReV. 2002, 54, 675–693.
(b) Ojima, I. Acc. Chem. Res. 2008, 41, 108–119. (c) Russell-Jones, G.;
McTavish, K.; McEwan, J.; Rice, J.; Nowotnik, D. J. Inorg. Biochem. 2004, 98,
1625–1633.
(1) (a) Vance, J. E.; Steenbergen, R. Prog. Lipid Res. 2005, 44, 207–234.
(b) Weihua, Z.; Rsan, R.; Schroit, A. J.; Fidler, I. J. Cancer Res. 2005, 65, 11529–
11535. (c) Yeung, T.; Gilbert, G. E.; Shi, J.; Silvius, J.; Kapus, A.; Grinstein, S.
Science 2008, 319, 210–213. (d) Zwaal, R. R. A.; Comfurius, P.; Bevers, E. M.
Cell. Mol. Life Sci. 2005, 62, 971–988.
(7) For examples of PS derivatives with fluorescent labels contained within
their sn-2 chains, see: (a) Heikinheimo, L.; Somerharju, P. Biochim. Biophys.
Acta 2002, 1591, 75–85. (b) Martin, O. C.; Pagano, R. E. Anal. Biochem. 1986,
159, 101–108. (c) Pomorski, T.; Herrmann, A.; Zimmermann, B.; Zachowski,
A.; Muller, P. Chem. Phys. Lipids 1995, 77, 139–146. (d) Pomorski, T.; Holthuis,
J. C. M.; Herrmann, A.; van Meer, G. J. Cell Sci. 2004, 117, 805–813. (e)
Pomorski, T.; Muller, P.; Zimmermann, B.; Burger, K.; Devaux, P. F.; Herrmann,
A. J. Cell Sci. 1996, 109, 687–698. (f) Tanhuanpaa, K.; Cheng, K. H.; Anttonen,
K.; Virtanen, J. A.; Somerharju, P. Biophys. J. 2001, 81, 1501–1510. (g)
Tanhuanpaa, K.; Somerharju, P. J. Biol. Chem. 1999, 274, 35359–35366.
(8) For a discussion of the membrane dynamics of phospholipids with probes
in their sn-2 chains, see: Devaux, P. F.; Fellmann, P.; Herve, P. Chem. Phys.
Lipids 2002, 116, 115–134.
(2) (a) Daleke, D. L. J. Lipid Res. 2003, 44, 233–242. (b) Darland-Ransom,
M.; Wang, X.; Sun, C. L.; Mapes, J.; Gengyo-Ando, K.; Mitani, S.; Xue, D.
Science 2008, 320, 528–531. (c) Chen, C. Y.; Ingram, M. F.; Rosal, P. H.;
Graham, T. R. J. Cell Biol. 1999, 147, 1223–1236. (d) Paulusma, C. C.; Elferink,
R. Biochim. Biophys. Acta 2005, 1741, 11–24. (e) Daleke, D. L. J. Biol. Chem.
2007, 282, 821–825. (f) Graham, T. R. Trends Cell Biol. 2004, 14, 670–677.
(3) (a) Bratton, D. L.; Henson, P. M. Curr. Biol. 2007, 18, R76-R79. (b)
Ravichandran, K. S.; Lorenz, U. Nat. ReV. Immunol. 2007, 7, 964–974.
(4) (a) Moghimi, S. M.; Hunter, A. C. Pharm. Res. 2001, 18, 1–8. (b) Otsuka,
M.; Negishi, Y.; Aramaki, Y. FEBS Lett. 2007, 581, 325–330.
(5) Mercer, J.; Helenius, A. Science 2008, 320, 531–535.
10.1021/jo8011336 CCC: $40.75
Published on Web 07/11/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 6053–6058 6053