4086 J ournal of Medicinal Chemistry, 1997, Vol. 40, No. 25
Wilkerson et al.
Ar′CH2 and NCH), 3.32 (d, J ) 14.6 Hz, 1H, NCH), 3.74 (s,
3H, OCH3), 3.78-3.89 (m, 4H, CHCHCHCH), 4.84 (d, J ) 14.3
Hz, 1H, NCH), 4.91 (d, J ) 14.6 Hz, 1H, NCH), [6.64 (s, 1H),
6.71 (m, 2H), 7.02 (d, 2H), 7.2-7.37 (m, 10H), 7.45 (d, 1H),
7.64 (s, 1H), 7.81 (d, 1H), 8.27 (d, 1H), 8.38 (d, 1H), 8.47 (s,
1H), Ar], 9.69 (s, 1H, NH); MS (NH3-DCI) m/e 698 (M + 1) for
C42H43N5O5, MW 697.84.
7.1-7.35 (m, 8H), 7.39 (d, 1H), 7.44 (dd, 1H), 7.82 (m, 1H),
7.88 (s, 1H), 7.95 (d, 1H), 8.18 (d, 1H), 8.39 (d, 1H), Ar], 10.76
(s, 1H, NH); IR (KBr) 3452 (OH), 3304 (NH), 1692 (CdO), 1612
(CdO) cm-1; UV-vis (c ) 0.12 mg/mL, MeOH) λmax 286
(17 022), 261 (12 588), 221 (40 611) nm; MS (NH3-DCI) m/e
657 (M + 1), 674 (M + NH4); [R]20D +91.25° (c ) 0.080, MeOH).
Anal. Calcd for C40H49N4O5‚0.5H2O: C, 72.18; H, 6.21; N, 8.42.
Found: C, 71.78; H, 5.88; N, 8.15.
A solution of the acetonide (0.170 g, 0.244 mmol) in 10 mL
of acetonitrile was treated with 10 mL of 1 N HCl and stirred
at room temperature for 24 h. The mixture was diluted with
50 mL of water and adjusted to pH 8 with 5% NaHCO3. The
mixture was stirred at 4 °C for 2 h, and the resulting white
solid was collected by filtration, washed with cold water, and
dried in vacuo at 80 °C for 16 h to give the desired product in
90% (0.145 g) yield, or 32% from the half ester: mp 112 °C
(4R,5R,6â,7â)-3-[[3-[(3-Am in oph en yl)m eth yl]h exah ydr o-
5,6-d ih yd r oxy-2-oxo-4,7-b is(p h en ylm et h yl)-1H-1,3-d ia z-
ep in -1-yl]m et h yl]-N-(5-m et h yl-2-p yr id in yl)b en za m id e
Hem ih yd r a te (10). The methylisourea Ib (13.14 mmol) was
alkylated with methyl 3-bromobenzoate using NaH in dry
DMF to give (methyl 3-methylbenzoate)-methylisourea in 86%
(5.96 g) yield as an oil after column chromatography on silica
gel (EtOAc-hexane, 1:4): 1H NMR (300 MHz, DMSO-d6, TMS)
δ 1.46 (s, 6H, CH3CCH3), 2.7-2.86 (m, 2H, Ar′CH), 2.99-3.10
(m, 2H, Ar′CH), 3.18 (d, J ) 14.3 Hz, 1H, NCH), 3.38 (s, 3H,
OCH3), 3.71 (m, 1H, CH), 3.86 (s, 3H, OCH3), 4.18 (m, 3H,
CHCHCH), 4.38 (d, J ) 14.65, 1H, NCH), 6.98-7.92 (m, 14H,
Ar); MS (NH3-DCI) m/e 529 (M + NH4). The methyl benzoate-
methylisourea (11.22 mmol) was alkylated by refluxing with
3-nitrobenzyl bromide in acetonitrile for 3 days. After the
usual workup, the crude material was column chromato-
graphed of silica gel (EtOAc-hexane, 9:1) to give desired
product in 54% yield: MS (NH3-DCI) m/e 667 (M + NH4). The
nitrobenzyl methyl benzoate (1.38 mmol) was reacted with
2-amino-5-methylpyridine under Weinreb conditions to give
the corresponding amide in 35% yield as a foam: MS (NH3-
DCI) m/e 726 (M + NH4). The nitrobenzyl amide acetonide
(0.45 mmol) was reduced with 10% Pd/C in CH2Cl2 to give the
desired anilino amide acetonide in 100% yield.
1
dec; H NMR (300 MHz, DMSO-d6, TMS) δ 2.65-3.1 (m, 6H,
2Ar′CH2 + 2NCH)), 3.3-3.65 (m, 4H, NCHCHCHCHN), 3.59
(s, 3H, OCH3), 4.66 (d, J ) 14.3 Hz, 1H, NCH), 4.71 (d, J )
14.3 Hz, 1H, NCH), 5.15 (s, 2H, 2OH), [6.65 (s, 1H), 6.69 (d,
1H), 6.83 (m, 1H), 6.94 (d, 2H), 7.07 (d, 2H), 7.15-7.35 (m,
7H), 7.42 (d, 1H), 7.49 (dd, 1H), 7.89 (s, 1H), 7.97 (d, 1H), 8.42
(m, 1H), 8.48 (m, 1H), 9.40 (s, 1H), Ar], 11.15 (s, 1H, NH); IR
(KBr) 3412 (OH and NH), 1686 (CdO), 1604 (CdO) cm-1; UV-
vis (c ) 0.0270 mg/mL, MeOH) λmax 303 (10 183), 287 (14 593),
252 (12 888) nm; MS (NH3-DCI) m/e 675 (M + NH4). Anal.
Calcd for C39H39N5O5, MW 657.77: C, 71.21; H, 5.99; N, 10.65.
Found: C, 70.98; H, 6.09; N, 10.34. Analytical HPLC: Zorbax
ODS 4.6 × 250 mm column, solvent H2O-CH3CN, flow rate
of 1 mL/min, detector at 256 nm.
(4r,5r,6â,7â)-3-[[Hexa h yd r o-5,6-d ih yd r oxy-3-[(3-m eth -
oxyp h en yl)m eth yl]-2-oxo-4,7-bis(p h en ylm eth yl)-1H-1,3-
d ia ze p in -1-yl]m e t h yl]-N -(5-m e t h yl-2-p yr id in yl)b e n z-
a m id e Sesqu ih yd r a te (7). By substituting 5-methyl-2-
aminopyridine in the method for 6, the desired product was
obtained in 74% (0.327 g) or 35% from the half ester: mp 238-
240 °C; 1H NMR (300 MHz, DMSO-d6, TMS) δ 2.30 (s, 3H,
CH3), 2.7-3.09 (m, 6H, Ar′CH2 and NCH), 3.40-3.58 (m, 4H,
CHCHCHCH), 3.70 (s, 3H, OCH3), 4.66 (d, J ) 14.3 Hz, 1H,
NCH), 4.71 (d, J ) 14.3 Hz, 1H, NCH), 5.40 (broad s, 2H, OH),
[6.65 (s, 1H), 6.68 (d, 1H), 6.81 (m, 1H), 6.93 (d, 1H), 7.06 (d,
2H), 7.18-7.33 (m, 7H), 7.38 (d, 1H), 7.45 (dd, 1H), 7.58 (d,
1H), 7.88 (s, 1H), 7.96 (d, 1H), 8.04 (d, 1H), 8.24 (s, 1H), Ar],
10.98 (s, 1H, NH); IR (KBr) 3364 (OH and NH), 1686 (CdO),
1612 (CdO) cm-1; UV-vis (c ) 0.0160 mg/mL, MeOH) λmax
287 (16 603), 263 (14 003), 221 (42 597) nm; MS (NH3-DCI)
The acetonide protecting group was removed in the usual
manner to give the desired product in 62% yield (overall yield
1
) 10% for five steps): mp 230-232 °C; H NMR (300 MHz,
DMSO-d6, TMS) δ 2.27 (s, 3H, CH3), 2.59 (d, J ) 14.3 Hz, 1H,
NCH), 2.76 (dd, 1H, Ar′CH), 2.96 (m, 3H, Ar′CH), 3.05 (d, J )
14.3 Hz, 1H, NCH), 3.50 (m, 4H, CHCHCHCH), 4.58 (d, J )
14.3 Hz, 1H, NCH), 4.71 (d, J ) 14.3 Hz, 1H, NCH), 5.07 (m,
4H, OH and NH2), [6.24 (d, 1H), 6.34 (s, 1H), 6.43 (d, 1H),
6.94 (m, 3H), 7.12 (d, 2H), 7.26 (m, 7H), 7.45 (dd, 1H), 7.64
(dd, 1H), 7.86 (s, 1H), 7.94 (d, 1H), 8.07 (d, 1H), 8.21 (s, 1H,)
Ar], 10.66 (s, 1H, NH); IR (KBr) 3366 (OH and NH), 1678
(CdO), 1606 (CdO) cm-1; UV-vis (c ) 0.014 mg/mL, MeOH)
λ
max 310 (19 130), 254 (16 095) nm; MS (NH3-DCI) m/e 656 (M
m/e 671 (M + 1), 688 (M + 14); [R]20 +80.77° (c ) 0.16,
+ 1); [R]20 +78.75° (c ) 0.08, MeOH). Anal. Calcd for
D
D
MeOH). Anal. Calcd for C41H42N4O5‚1.5H2O, MW 697.84: C,
70.58; H, 6.48; N, 8.03. Found: C, 70.82; H, 6.17; N, 8.01.
(4r,5r,6â,7â)-3-[[Hexa h yd r o-5,6-d ih yd r oxy-3-[(3-m eth -
oxyp h en yl)m eth yl]-2-oxo-4,7-bis(p h en ylm eth yl)-1H-1,3-
d ia ze p in -1-yl]m e t h yl]-N -(6-m e t h yl-2-p yr id in yl)b e n z-
a m id e Hem ih yd r a te (8). By substituting 6-methyl-2-ami-
nopyridine in the method for 6, the desired product was
obtained in 82% (0.146 g) or 28% from the half ester: mp 243-
245 °C; 1H NMR (300 MHz, DMSO-d6, TMS) δ 2.45 (s, 3H,
CH3), 2.7-3.08 (m, 6H, Ar′CH2 and NCH), 3.35-3.58 (m, 4H,
CHCHCHCH), 3.70 (s, 3H, OCH3), 4.66 (d, J ) 14.3 Hz, 1H,
NCH), 4.71 (d, J ) 14.6 Hz, 1H, NCH), 5.13 (broad s, 2H, OH),
[6.65 (1, 1H), 6.68 (d, 1H), 6.83 (m, 1H), 6.93 (d, 2H), 7.00 (d,
1H), 7.06 (d, 2H), 7.2-7.34 (m, 7H), 7.36 (d, 1H), 7.42 (dd, 1H),
7.68 (dd, 1H), 7.88 (s, 1H), 7.94 (d, 1H), 7.98 (d, 1H), Ar], 10.67
(s, 1H, NH); IR (KBr) 3448 (OH), 3310 (NH), 1690 (CdO), 1608
(CdO) cm-1; MS (NH3-DCI) m/e 671 (M + 1), 688 (M + NH4);
C40H41N5O4‚0.5H2O, MW 664.81: C, 72.27; H, 6.37; N, 10.53.
Found: C, 72.57; H, 6.33; N, 10.35.
(4r,5r,6â,7â)-3-[[Hexa h yd r o-5,6-d ih yd r oxy-3-[(3-n itr o-
p h en yl)m eth yl]-2-oxo-4,7-bis(p h en ylm eth yl)-1H-1,3-d ia z-
epin -1-yl]m eth yl]-N-2-pyr idin ylben zam ide dih ydr ate (11).
By substituting 2-aminopyridine in the method for 10, the
desired product was obtained in 42% yield after chromatog-
raphy on silica using CHCl3-MeOH (99:1): mp 235-238 °C;
1H NMR (300 MHz, DMSO-d6, TMS) δ 2.65-2.79 (m, 2H,
Ar′CH), 2.98 (m, 3H, Ar′CH and NCH), 3.51-3.64 (m, 4H,
CHCHCHCH), 4.50 (d, J ) 13.9 Hz, 1H, NCH), 4.67 (d, J )
13.9 Hz, 1H, NCH), 5.18 (s, 2H, OH), 6.85-8.38 (m, 22H, Ar),
10.75 (s, 1H, NH); IR (KBr) 3332 (OH), 1678 (CdO), 1640
(CdO) cm-1; UV-vis (c ) 0.017 mg/mL, MeOH) λmax 284
(16 122), 264 (15 647) nm; MS (NH3-DCI) m/e 672 (M + 1);
[R]20D +77.21° (c ) 0.136, MeOH). Anal. Calcd for C39H37N5O6‚
2H2O, MW 707.79: C, 66.18; H, 5.84; N, 9.89. Found: C,
66.51; H, 5.56; N, 9.61.
[R]20 +97.37° (c
) 0.08, MeOH). Anal. Calcd for
D
C41H42N4O5‚0.5H2O, MW 679.83: C, 72.44; H, 6.38; N, 8.24.
Found: C, 72.76; H, 6.31; N, 8.14.
(4r,5r,6â,7â)-3-[[3-[(3-Am in oph en yl)m eth yl]h exah ydr o-
5,6-d ih yd r oxy-2-oxo-4,7-b is(p h en ylm et h yl)-1H-1,3-d ia z-
ep in -1-yl]m eth yl]-N-(1,1-d im eth yleth yl)ben za m id e (12).
By substituting tert-butylamine in the method used to obtain
10, the desired intermediate nitro amide acetonide was
obtained in 103% (1.10 g) yield: 1H NMR (300 MHz, CDCl3,
(4r,5r,6â,7â)-3-[[Hexa h yd r o-5,6-d ih yd r oxy-3-[(3-m eth -
oxyp h en yl)m eth yl]-2-oxo-4,7-bis(p h en ylm eth yl)-1H-1,3-
d ia zep in -1-yl]m eth yl]-N-2-p yr id in ylben za m id e Hem ih y-
d r a te (9). By substituting 2-aminopyridine in the method for
6, the desired product was obtained in 59% yield from the half
t
TMS) δ 1.41 (m, 15H, Bu and iPr), 2.75-3.1 (m, 4H, ArCH2),
1
ester: mp 223-225 °C; H NMR (300 MHz, DMSO-d6, TMS)
3.16 (d, J ) 14.3 Hz, 1H, NCH), 3.40 (d, J ) 14.6 Hz, 1H,
NCH), 3.8 (m, 2H, ArCCH), 3.09-4.05 (m, 2H, OCH), 4.80 (d,
J ) 14.6 Hz, 1H, NCH), 4.89 (d, J ) 14.3 Hz, 1H, NCH), 5.85
(s, 1H, NH), 6.95-8.1 (m, 18H, Ar); MS (NH3-DCI) m/e 708
(M + NH4) for C41H46N4O6, MW 690.85.
δ 2.7-3.1 (m, 6H, Ar′CH2 and NCH), 3.4-3.65 (m, 4H,
CHCHCHCH), 3.70 (s, 3H, OCH3), 4.67 (d, J ) 14.7 Hz, 1H,
NCH), 4.72 (d, J ) 14.6 Hz, 1H, NCH), 5.12 (m, 2H, OH), [6.65
(s, 1H), 6.69 (d, 1H), 6.83 (m, 1H), 6.96 (d, 2H), 7.08 (d, 2H),