6114
G.A. Chotana et al. / Tetrahedron 64 (2008) 6103–6114
21. Alessi, M.; Larkin, A. L.; Ogilvie, K. A.; Green, L. A.; Lai, S.; Lopez, S.; Snieckus, V.
J. Org. Chem. 2007, 72, 1588–1594.
22. Kalinin, V. N. Synthesis 1992, 413–432.
23. Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508–7510.
24. Murata, M.; Watanabe, S.; Masuda, Y. J. Org. Chem. 1997, 62, 6458–6459.
25. Murata, M.; Oyama, T.; Watanabe, S.; Masuda, Y. J. Org. Chem. 2000, 65, 164–168.
26. Iverson, C. N.; Smith, M. R., III. J. Am. Chem. Soc. 1999, 121, 7696–7697.
27. Cho, J. Y.; Iverson, C. N.; Smith, M. R., III. J. Am. Chem. Soc. 2000, 122, 12868–
12869.
138.2 (C), 133.1 (C), 131.2 (CH), 129.1 (CH), 128.8 (CH), 128.4 (CH),
~
125.5 (CH), 124.0 (C), 108.3 (C), 21.4 (CH3); FTIR (neat) nmax: 3042,
2920, 2858, 1604, 1487, 1028, 972, 831, 789, 779, 700 cmꢁ1; GC/MS
(EI) m/z (% relative intensity): Mþ 287 (63), 288 (100), 290 (29), 287
(63), 251 (5), 171 (19). Anal. Calcd for C11H9BrClS: C, 45.94; H, 2.80.
Found: C, 45.96; H, 2.79.
28. Cho, J. Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E., Jr.; Smith, M. R., III. Science
2002, 295, 305–308.
29. Tse, M. K.; Cho, J. Y.; Smith, M. R., III. Org. Lett. 2001, 3, 2831–2833.
30. Ishiyama, T.; Takagi, J.; Hartwig, J. F.; Miyaura, N. Angew. Chem., Int. Ed. 2002, 41,
3056–3058.
31. Takagi, J.; Sato, K.; Hartwig, J. F.; Ishiyama, T.; Miyaura, N. Tetrahedron Lett. 2002,
43, 5649–5651.
32. Ishiyama, T.; Takagi, J.; Yonekawa, Y.; Hartwig, J. F.; Miyaura, N. Adv. Synth. Catal.
2003, 345, 1103–1106.
33. Miyaura, N.; Ishiyama, T. PCT Int. Appl. WO 2003074533, 2003, p 42.
34. Boller, T. M.; Murphy, J. M.; Hapke, M.; Ishiyama, T.; Miyaura, N.; Hartwig, J. F.
J. Am. Chem. Soc. 2005, 127, 14263–14278.
35. Paul, S.; Chotana, G. A.; Holmes, D.; Reichle, R. C.; Maleczka, R. E., Jr.; Smith,
M. R., III. J. Am. Chem. Soc. 2006, 128, 15552–15553.
36. Christophersen, C.; Begtrup, M.; Ebdrup, S.; Petersen, H.; Vedso, P. J. Org. Chem.
2003, 68, 9513–9516.
37. Chotana, G. A.; Rak, M. A.; Smith, M. R., III. J. Am. Chem. Soc. 2005, 127, 10539–
10544.
38. Mertins, K.; Zapf, A.; Beller, M. J. Mol. Catal. A: Chem. 2004, 207, 21–25.
39. Ishiyama, T.; Ishida, K.; Takagi, J.; Miyaura, N. Chem. Lett. 2001, 1082–1083.
40. Shimada, S.; Batsanov, A. S.; Howard, J. A. K.; Marder, T. B. Angew. Chem., Int. Ed.
2001, 40, 2168–2171.
4.2.7.3. 5-(3,5-Bis(trifluoromethyl)phenyl)-2-chloro-3-m-tolylthio-
phene (29). In a glove box, a Schlenk flask, equipped with a magnetic
stirring bar, was charged with 2-(3,5-bis(trifluoromethyl)-
phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (82 mg, 0.24 mmol,
1.0 equiv). Two separate test tubes were charged with Pd(PPh3)4
(5.5 mg, 0.0048 mmol, 2 mol %) and 5-bromo-2-chloro-3-m-tol-
ylthiophene (28) (69 mg, 0.24 mmol, 1.0 equiv). DME (2 mL) was
used to transfer the contents of the test tubes into the Schlenk flask.
The Schlenkflaskwas then broughtoutof the glovebox andattached
to a Schlenk line. K3PO4$nH2O (319 mg,1.50 equiv) was added under
N2 counter flow to the Schlenk flask. The flask was stoppered and
the mixture was heated at 80 ꢀC for 7 h. At this point the reaction
mixture was allowed to cool to room temperature. The reaction
solution was then filtered through a thin pad of silica gel (eluting
with CH2Cl2) and the eluent was concentrated under reduced
pressure. The crude material so obtained was purified via flash
chromatography on silica gel (hexanes, Rf 0.5) to provide the Suzuki
product as a white solid (85 mg, 84% yield, mp 77–79 ꢀC). 1H NMR
41. Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.; Hartwig, J. F. J. Am.
Chem. Soc. 2002, 124, 390–391.
(CDCl3, 500 MHz):
d 7.94 (s, 2H), 7.80 (s, 1H), 7.41–7.40 (m, 2H), 7.38
42. Ishiyama, T.; Sato, K.; Nishio, Y.; Saiki, T.; Miyaura, N. Chem. Commun. 2005,
5065–5067.
43. Strotman, N. A.; Sommer, S.; Fu, G. C. Angew. Chem., Int. Ed. 2007, 46, 3556–
3558.
44. Denmark, S. E.; Baird, J. D. Chem.dEur. J. 2006, 12, 4954–4963.
45. Karlsson, O. Synth. Commun. 1981, 11, 29–34.
46. Meth-Cohn, O.; Ashton, M. Tetrahedron Lett. 2000, 41, 2749–2752.
47. Highly selective functionalization of 3-methylthiophene by DoM typically re-
quires a hindered electrophile trap. Recently it has been shown that LiTMP
metalates the 5-position of 3-methyl thiophene with high selectivity: Smith, K.;
Barratt, M. L. J. Org. Chem. 2007, 72, 1031–1034.
(s, 1H), 7.37–7.33 (t, J¼7.8 Hz, 1H), 7.22–7.20 (d, J¼7.3 Hz, 1H), 2.43
(s, 3H, CH3); 13C NMR {1H} (CDCl3, 125 MHz):
d 140.1 (C), 138.3 (C),
137.1 (C), 135.6 (C), 133.4 (C), 132.6 (q, 2JC–F¼33.6 Hz, 2C), 129.1 (CH),
128.9 (CH), 128.5 (CH), 126.4 (CH), 126.2 (C), 125.5 (CH), 125.2 (q,
3JC–F¼3.8 Hz, 2 CH), 123.1 (q, JC–F¼272.8 Hz, CF3), 121.1 (septet,
1
3
~
JC–F¼3.9 Hz, CH), 21.4 (CH3); FTIR (neat) nmax: 3048, 2926, 1618,
1474, 1433, 1369, 1330, 1279, 1227, 1181, 1136, 1109, 1011, 891, 845,
789, 698, 684 cmꢁ1; HRMS (FABþ): m/z 420.0174 [Mþ; calcd for
48. Lomas, J. S.; Lacroix, J. C.; Vaissermann, J. J. Chem. Soc., Perkin Trans. 2 1999,
2001–2010.
C
19H11ClF6S: 420.0177].
49. Espaze, F.; Hamon, J.; Hirbec, H.; Vignon, J.; Kamenka, J.-M. Eur. J. Med. Chem.
2000, 35, 323–331.
50. Miyasaka, M.; Rajca, A. Synlett 2004, 177–181.
Acknowledgements
51. Pham Chiem, V.; Macomber, R. S.; Mark, H. B., Jr.; Zimmer, H. J. Org. Chem. 1984,
49, 5250–5253.
52. Frohlich, H.; Kalt, W. J. Org. Chem. 1990, 55, 2993–2995.
53. Odom, J. D.; Moore, T. F.; Goetze, R.; Noeth, H.; Wrackmeyer, B. J. Organomet.
Chem. 1979, 173, 15–32.
We thank BASF, Inc. for a generous gift of HBPin, and the
Michigan Economic Development Corp., NIH (GM63188) and the
Astellas USA Foundation for their generous financial support.
54. Feng, S.; Maleczka, R. E., Jr.; Smith, M. R., III, in preparation.
55. Lawesson, S.-O. Ark. Kemi. 1957, 11, 387–395.
56. Kuivila, H. G.; Benjamin, L. E.; Price, A. D.; Polevy, J. H.; Murphy, C. J. J. Org. Chem.
1962, 27, 825–829.
References and notes
1. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425–2427.
2. Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater.
2005, 4, 864–868.
57. Szumigala, R. H.; Devine, P. N.; Gauthier, D. R.; Volante, R. P. J. Org. Chem. 2004,
69, 566–569.
58. Carreno, M. C.; Ruano, J. L. G.; Sanz, G.; Toledo, M. A.; Urbano, A. J. Org. Chem.
1995, 60, 5328–5331.
3. Street, R. A. Nat. Mater. 2006, 5, 171–172.
4. Fox, K. A. A.; Chelliah, R. Expert Opin. Drug Metab. Toxicol. 2007, 3, 621–631.
5. Sperry, J. B.; Wright, D. L. Curr. Opin. Drug Discov. Dev. 2005, 8, 723–740.
6. De Francesco, R.; Migliaccio, G. Nature 2005, 436, 953–960.
7. Chauvette, R. R.; Flynn, E. H.; Jackson, B. G.; Lavagnino, E. R.; Morin, R. B.;
Mueller, R. A.; Pioch, R. P.; Roeske, R. W.; Ryan, C. W.; Spencer, J. L.;
Van Heyningen, E. J. Am. Chem. Soc. 1962, 84, 3401–3402.
8. Volhard, J.; Erdmann, H. Ber. Dtsch. Chem. Ges. 1885, 454–455.
9. Meyer, V. Ber. Dtsch. Chem. Ges. 1885, 217–218.
10. Volhard, J. Justus Liebigs Ann. Chem. 1892, 267, 172–185.
11. Thomas, V. C. R. Hebd. Seances Acad. Sci. 1908, 146, 642–645.
12. Gilman, H.; Shirley, D. A. J. Am. Chem. Soc. 1949, 71, 1870–1871.
13. Snieckus, V. Chem. Rev. 1990, 90, 879–933.
59. Gallant, M.; Lachance, N.; Labelle, M.; Zamboni, R.; Juteau, H.; Gareau, Y.;
Lacombe, P. PCT Int. Appl. WO 2001081312, 2001, p 77.
60. Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.;
Isakson, P. C.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Penning, T. D.; Rogers,
R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.;
Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veehuizen, A. W.;
Zhang, Y. Y. Actual. Chim. Ther. 1999, 25, 123–134.
61. Parham, W. E.; Nicholson, I.; Traynelis, V. J. J. Am. Chem. Soc. 1956, 78, 850–
854.
62. Almutairi, A.; Yoon, K.; Tham, F.; Marsella, M. J. Pure Appl. Chem. 2006, 78, 777–
781.
63. Sudarsanam, V.; Giordano, A.; Vasu, K. K.; Thakar, H. M.; Giri, R. S.; Yerande,
S. G.; Inamdar, G. S. PCT Int. Appl. WO 2007118149, 2007, p 172.
64. Pillai, A. D.; Rathod, P. D.; Xavier, F. P.; Vasu, K. K.; Padh, H.; Sudarsanam, V.
Bioorg. Med. Chem. 2004, 12, 4667–4671.
65. Merola, J. S.; Kacmarcik, R. T. Organometallics 1989, 8, 778–784.
66. Uson, R.; Oro, L. A.; Cabeza, J. A. Inorg. Synth. 1985, 23, 126–130.
67. Barton, T. J.; Hussmann, G. P. J. Org. Chem. 1985, 50, 5881–5882.
68. Liska, R. Heterocycles 2001, 55, 1475–1486.
14. Arroo, R. R. J.; Jacobs, J.; VanGestel, J. A. M.; Kenkel, H.; Jannink, W.; Croes, A. F.;
Wullems, G. J. New Phytol. 1997, 135, 175–181.
15. Mosurkal, R.; Kumar, R.; Bruno, F. F.; Nagarajan, R.; Samuelson, L.; Kumar, J. Pure
Appl. Chem. 2005, 77, 263–272.
16. Campos, K. R. Chem. Soc. Rev. 2007, 36, 1069–1084.
17. Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173–1193.
18. Wolfe, J. P.; Thomas, J. S. Curr. Org. Chem. 2005, 9, 625–655.
19. Anderson, K. W.; Tundel, R. E.; Ikawa, T.; Altman, R. A.; Buchwald, S. L. Angew.
Chem., Int. Ed. 2006, 45, 6523–6527.
69. Wu, X. M.; Rieke, R. D. J. Org. Chem. 1995, 60, 6658–6659.
70. Wu, R. L.; Schumm, J. S.; Pearson, D. L.; Tour, J. M. J. Org. Chem. 1996, 61, 6906–
6921.
20. Fairlamb, I. J. S. Chem. Soc. Rev. 2007, 36, 1036–1045.