Three-Component Coupling Using Arynes and Aminosilanes for
ortho-Selective Double Functionalization of Aromatic Skeletons
Takami Morishita, Hiroyuki Fukushima, Hiroto Yoshida,* Joji Ohshita, and Atsutaka Kunai
Department of Applied Chemistry, Graduate School of Engineering, Hiroshima UniVersity,
Higashi-Hiroshima 739-8527, Japan
ReceiVed April 4, 2008
Arynes were found to couple with aminosilanes and carbonyl compounds in the presence of benzoic
acid to provide 2-aminobenzhydrols. Sulfonylimines could also be applied to the reaction, enabling amino
and aminomethyl moieties to be incorporated into contiguous positions of aromatic skeletons. Only a
small amount of the three-component coupling product was obtained in the absence of benzoic acid,
which confirms its vital role in the present reaction.
1. Introduction
component coupling, in which the intramolecular cyclization
is impeded entirely (Scheme 1).5 We report herein new methods
for simultaneous introduction of two functionalities into neigh-
boring positions of aromatic skeletons based upon a three-
component coupling using arynes and aminosilanes.6 By
employing such carbon electrophiles as carbonyl compounds
or sulfonylimines, diverse multisubstituted arenes containing
Synthetic application of arynes to constructing polysubstituted
arenes and/or benzo-annulated cyclic compounds, which are
difficult to obtain by conventional methods, has attracted
considerable attention.1 Among these, multicomponent coupling
reactions would be very beneficial from a synthetic standpoint
for generating molecular complexity and diversity, and we have
already disclosed that iminoisobenzofuran,2a iminoiso-
indoline2b or benzoxazinone2c derivatives can directly be
synthesized based upon the three-component coupling using
arynes. The reaction proceeds through following three steps:
(1) formation of zwitterions resulting from nucleophilic attack
of such unsaturated nucleophiles as isocyanides or imines to
arynes, (2) capture of the resulting zwitterions by electrophiles,3
(3) intramolecular cyclization.4 The third step is triggered by
the unsaturation in the cationic site of intermediate A, and thus
we envisaged that the use of saturated nucleophiles in lieu of
unsaturated ones should result in a different type of three-
(3) Formation of monosubstituted arenes by proton abstraction: (a) Sato, Y.;
Toyooka, T.; Aoyama, T.; Shirai, H. J. Org. Chem. 1976, 41, 3559–3564. (b)
Nakayama, J.; Takeue, S.; Hoshino, M. Tetrahedron Lett. 1984, 25, 2679–2682.
(c) Hayashi, S.; Ishikawa, N. Bull. Chem. Soc. Jpn. 1972, 45, 642–644. (d)
Ramtohul, Y. K.; Chartrand, A. Org. Lett. 2007, 9, 1029–1032. (e) Kolomeitsev,
A. A.; Vorobyev, M.; Gillandt, H. Tetrahedron Lett. 2008, 49, 449-454. For a
review on insertion reactions of arynes into element-element σ-bond, see: Pen˜a,
D.; Pe´rez, D.; Guitia´n, E. Angew. Chem., Int. Ed. 2006, 45, 3578-3581. For
examples, see: (f) Yoshida, H.; Shirakawa, E.; Honda, Y.; Hiyama, T. Angew.
Chem., Int.Ed. 2002, 41, 3247–3249. (g) Liu, Z. J.; Larock, R. C. J. Am. Chem.
Soc. 2005, 127, 13112–13113. (h) Yoshida, H.; Terayama, T.; Ohshita, J.; Kunai,
A. Chem. Commun. 2004, 1980–1981. (i) Yoshida, H.; Minabe, T.; Ohshita, J.;
Kunai, A. Chem. Commun. 2005, 3454–3456. (j) Yoshida, H.; Watanabe, M.;
Ohshita, J.; Kunai, A. Chem. Commun. 2005, 3292–3294. (k) Yoshida, H.;
Watanabe, M.; Ohshita, J.; Kunai, A. Tetrahedron Lett. 2005, 46, 6729–6731.
(l) Yoshida, H.; Watanabe, M.; Morishita, T.; Ohshita, J.; Kunai, A. Chem.
Commun. 2007, 1505–1507. (m) Tamber, U. K.; Stoltz, B. M. J. Am. Chem.
Soc. 2005, 127, 5340–5341. (n) Tamber, U. K.; Ebner, D. C.; Stoltz, B. M.
J. Am. Chem. Soc. 2006, 128, 11752–11753. (o) Yoshida, H.; Watanabe, M.;
Ohshita, J.; Kunai, A. Chem. Lett. 2005, 34, 1538–1539. (p) Yoshida, H.; Mimura,
Y.; Ohshita, J.; Kunai, A. Chem. Commun. 2007, 2405–2407. (q) Beltra´n-Rodil,
S.; Pen˜a, D.; Guitia´n, E. Synlett 2007, 8, 1308–1310. (r) Toledo, F. T.; Margues,
H.; Comasseto, J. V.; Raminelli, C. Tetrahedron Lett. 2007, 48, 8125–8127.
(4) Other three-component couplings using neutral nucleophiles: (a) Yoshida,
H.; Watanabe, M.; Fukushima, H.; Ohshita, J.; Kunai, A. Org. Lett. 2004, 6,
4049–4051. (b) Jeganmohan, M.; Cheng, C.-H. Chem. Commun. 2006, 2454–
2456.
(1) For reviews, see: (a) Biehl, E. R.; Khanapure, S. P. Acc. Chem. Res.
1989, 22, 275–281. (b) Kessar,S. V. In ComprehensiVe Organic Synthesis
Trost,B. M. , Fleming,I. , Semmelhack,M. F. , Eds.; Pergamon: Oxford ,1991;
Vol. 4, pp 483-515. (c) Pellissier, H.; Santelli, M. Tetrahedon 2003, 59, 701–
730. (d) Dyke, A. M.; Hester, A. J.; Lloyd-Jones, G. C. Synthesis 2006, 4093–
4112. For recent examples, see: (e) Hamura, T.; Ibusuki, Y.; Uekusa, H.;
Matsumoto, T.; Siegel, J. S.; Baldridge, K. K.; Suzuki, K. J. Am. Chem. Soc.
2006, 128, 10032–11033. (f) Liu, Z.; Larock, R. C. J. Org. Chem. 2007, 72,
223–232. (g) Gilmore, C. D.; Allan, K. M.; Stoltz, B. M. J. Am. Chem. Soc.
2008, 130, 1558–1559.
(2) Aryne-isocyanide-aldehyde: (a) Yoshida, H.; Fukushima, H.; Ohshita,
J.; Kunai, A. Angew.Chem., Int. Ed. 2004, 43, 3935–3938. Aryne-isocyanide-
imine: (b) Yoshida, H.; Fukushima, H.; Ohshita, J.; Kunai, A. Tetrahedron Lett.
2004, 45, 8659–8662. Aryne-imine-CO2: (c) Yoshida, H.; Fukushima, H.;
Ohshita, J.; Kunai, A. J. Am. Chem. Soc. 2006, 128, 11040–11041. See also: (d)
Yoshida, H.; Fukushima, H.; Morishita, T.; Ohshita, J.; Kunai, A. Tetrahedron
2007, 63, 4793–4805.
(5) (a) Meyers, A. I.; Pansegrau, P. D. Tetrahedron Lett. 1983, 24, 4935–
4938. (b) Meyers, A. I.; Pansegrau, P. D. J Chem. Soc., Chem. Commun. 1985,
690–691. (c) Tripathy, S.; LeBlanc, R.; Durst, T. Org. Lett. 1999, 1, 1973–
1975.
5452 J. Org. Chem. 2008, 73, 5452–5457
10.1021/jo800761b CCC: $40.75 2008 American Chemical Society
Published on Web 06/21/2008