1058
E. N. Kadnikova, V. A. Thakor / Tetrahedron: Asymmetry 19 (2008) 1053–1058
15. Kadnikova, E. N.; Thakor, V. A. Abstracts of Papers, 232nd
Acknowledgments
National Meeting of the American Chemical Society, San
Francisco, California, September 10–14, 2006, ORGN-359.
16. Burgess, K.; Jennings, L. D. J. Am. Chem. Soc. 1990, 112,
7434.
17. (a) Choi, Y. K.; Suh, J. H.; Lee, D.; Lim, I. T.; Jung, J. Y.;
Kim, M. J. J. Org. Chem. 1999, 64, 8423; (b) Pamies, O.;
Backvall, J. E. Chem. Rev. 2003, 103, 3247.
18. Xu, D. W.; Li, Z. Y.; Ma, S. M. Chin. J. Chem. 2004, 22, 310.
19. Martinelle, M.; Hult, K. Biochim. Biophys. Acta 1995, 1251,
191, Deacylation step is rate-limiting.
We thank our undergraduate research assistants, Tiffany
Coleman, for help with the initial optimization of chiral
GC–MS conditions, and Daniel Yarrow, for synthesis of
some allylic acetates. The financial support of this study
by the University of Missouri—Kansas City and by the
University of Missouri Research Board is gratefully
acknowledged.
20. Raza, S.; Fransson, L.; Hult, K. Protein Sci. 2001, 10, 329.
21. With different substrates, the acylation step can be rate-
limiting, for example: Kobayashi, S. Macromol. Symp. 2006,
240, 178, The increase in the steric bulk of the incoming
nucleophile did not change the rate of the reaction in this
study, thus, deacylation step did not govern the reaction.
22. The nature of the rate-limiting step (deacylation or acylation)
can be concentration-dependent. See, for example: Panova,
A. A.; Kaplan, D. L. Biotechnol. Bioeng. 2003, 84, 103.
23. Fitzpatrick, P. F.; Flory, D. R.; Villafranca, J. J. Biochemistry
1985, 24, 2108.
References
1. (a) Reetz, M. T. Curr. Opin. Chem. Biol. 2002, 6, 145; (b)
Theil, F. Chem. Rev. 1995, 95, 2203; (c) Lau, R. M.; van
Rantwijk, F.; Seddon, K. R.; Sheldon, R. A. Org. Lett. 2000,
2, 4189; (d) Kazlauskas, R. J.; Bornscheuer, U. T. Hydrolases
in Organic Synthesis: Regio- and Stereoselective Biotransfor-
mations, second ed.; Wiley-VCH: Weinheim, 2005.
2. (a) Reetz, M. T.; Tielmann, P.; Wiesenhofer, W.; Konen, W.;
Zonta, A. Adv. Synth. Catal. 2003, 345, 717; (b) Reetz, M. T.;
Wenkel, R.; Avnir, D. Synthesis 2000, 781.
24. Lehmann, J.; Lloyd-Jones, G. C. Tetrahedron 1995, 51, 8863.
25. Jiang, Y. Y.; Han, J. Y.; Yu, C. Z.; Vass, S. O.; Searle, P. F.;
Browne, P.; Knox, R. J.; Hu, L. Q. J. Med. Chem. 2006, 49,
4333.
´
´
3. Badjic, J. D.; Kadnikova, E. N.; Kostic, N. M. Org. Lett.
2001, 3, 2025.
26. Evans, P. A.; Leahy, D. K. J. Am. Chem. Soc. 2003, 125,
8974.
4. Rotticci, D.; Norin, T.; Hult, K. Org. Lett. 2000, 2, 1373.
5. Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993,
93, 1307.
6. Bellemin-Laponnaz, S.; Tweddell, J.; Ruble, J. C.; Breitling,
F. M.; Fu, G. C. Chem. Commun. 2000, 1009.
27. Chen, P.; Cheng, P. T. W.; Alam, M.; Beyer, B. D.; Bisacchi,
G. S.; Dejneka, T.; Evans, A. J.; Greytok, J. A.; Hermsmeier,
M. A.; Humphreys, W. G.; Jacobs, G. A.; Kocy, O.; Lin, P.-
F.; Lis, K. A.; Marella, M. A.; Ryono, D. E.; Sheaffer, A. K.;
Spergel, S. H.; Sun, C.-q.; Tino, J. A.; Vite, G.; Colonno, R.
J.; Zahler, R.; Barrish, J. C. J. Med. Chem. 1996, 39, 1991.
28. Barluenga, J.; Fananas, F. J.; Sanz, R.; Marcos, C.; Trabada,
M. Org. Lett. 2002, 4, 1587.
29. Kazlauskas, R. J.; Weissfloch, A. N. E.; Rappaport, A. T.;
Cuccia, L. A. J. Org. Chem. 1991, 56, 2656.
30. Murakami, A.; Toyota, K.; Ohura, S.; Koshimizu, K.;
Ohigashi, H. J. Agric. Food Chem. 2000, 48, 1518.
31. Auburn, P. R.; Mackenzie, P. B.; Bosnich, B. J. Am. Chem.
Soc. 1985, 107, 2033.
7. Birman, V. B.; Jiang, H. Org. Lett. 2005, 7, 3445.
8. Vedejs, E.; Daugulis, O. J. Am. Chem. Soc. 1999, 121, 5813.
9. Onaran, M. B.; Seto, C. T. J. Org. Chem. 2003, 68, 8136.
10. Allan, G. R.; Carnell, A. J. J. Org. Chem. 2001, 66, 6495.
11. (a) Bogar, K.; Vidal, P. H.; Leon, A. R. A.; Backvall, J. E.
Org. Lett. 2007, 9, 3401; (b) Lee, D.; Huh, E. A.; Kim, M. J.;
Jung, H. M.; Koh, J. H.; Park, J. Org. Lett. 2000, 2, 2377.
12. There are, however, several examples of resolutions of
homoallylic alcohols bearing aromatic substituents, via
lipase-catalyzed acetylations. See, for example: (a) Berkowitz,
D. B.; Pumphrey, J. A.; Shen, Q. R. Tetrahedron Lett. 1994,
35, 8743; (b) Singh, S.; Kumar, S.; Chimni, S. S. Tetrahedron:
Asymmetry 2002, 13, 2679; (c) Adam, W.; Saha-Moller, C.
R.; Schmid, K. S. Tetrahedron: Asymmetry 1999, 10, 315.
13. Choi, J. H.; Choi, Y. K.; Kim, Y. H.; Park, E. S.; Kim, E. J.;
Kim, M. J.; Park, J. W. J. Org. Chem. 2004, 69, 1972.
14. Zhang, W.; Basak, A.; Kosugi, Y.; Hoshino, Y.; Yamamoto,
H. Angew. Chem., Int. Ed. 2005, 44, 4389.
32. Fuchs, S.; Berl, V.; Lepoittevin, J. P. Eur. J. Org. Chem. 2007,
1145.
´ ˆ
33. Pretot, R.; Lloyd-Jones, G. C.; Pfaltz, A. Pure Appl. Chem.
1998, 70, 1035.
34. (a) Miyabe, H.; Yoshida, K.; Reddy, V. K.; Matsumura, A.;
´ ˆ
Takemoto, Y. J. Org. Chem. 2005, 70, 5630; (b) Pretot, R.;
Pfaltz, A. Angew. Chem., Int. Ed. 1998, 37, 323.