Ruthenium-Metalation of Porphyrins and Schiff-Bases
try,4–7 building blocks for supra- or supermolecular as-
semblies,7,8 materials,9 and sensors,4 and in medicinal
chemistry.10 Compared to Fe-porphyrins, the range of Ru-
porphyrin systems studied is limited, the field being domi-
nated by “Ru(OEP)”, “Ru(TPP)”, “Ru(TMP)” and “Ru(T-
o,o′Cl2-PP)” derivatives (Scheme 1). In part, this likely
results from the limited synthetic methods for insertion of
Ru into the macrocycle, especially on comparison with the
many metalation methods developed for first-row transition
metals.5,11
The first Ru-porphyrin was reported in 1969, metalation being
accomplished by refluxing an ethanol solution of RuCl312 under
a CO atmosphere, although the RuIII(porp)(CO)Cl formulation
of the product was incorrect;13 the product was, in fact, a
solvated RuII(porp)(CO) species, as shown shortly afterward
when Ru3(CO)12 and [Ru(CO)3Cl2]2 were used as precursors.14
Subsequent Ru-metalations have generally been minor varia-
tions of these procedures, including the use of formaldehyde
as a source of CO.15
The popular choice of Ru3(CO)12 for metalation of porphyrins
results from the air-stable carbonyl being available commercially
but, because of its price, the dodecacarbonyl is commonly
prepared in-house via reduction of precursors such as RuCl3,
RuO2, or [Ru3(O)(OAc)6(H2O)3]OAc using CO at 1 atm or high
pressure.16 In these methods, the toxicity of CO17c and possible
formation of highly toxic phosgene16d,17a raise safety concerns;
indeed, two fatal accidents have occurred via open-air, CO
poisoning.17b Within the Ru3(CO)12 systems, general yield
comparisons are difficult. For example, metalation yields for
Ru(TMP)(CO)18 and Ru(T-o,o′Cl2-PP)(CO)6c are higher when
the carbonyl is added portion-wise (81-84%) versus a single
addition (25-44%). Of note, the Ru/porphyrin stoichiometry
is always >1, usually 9:1. The choice of solvent is also crucial:
a lower boiling point alcohol such as EtOH requires longer
refluxing time (∼24 h)13 than 2-(2′-methoxyethoxy)ethanol
(3-5 h),6a although an overnight reaction time has been reported
using this solvent.19 Similarly, refluxing in benzene14b,20
requires days, while use of decalin6c,11b,21,22 or dimethylfor-
mamide (DMF)10c,23 can reduce this to hours; a 1-3 week
reaction time was reported for metalation of Na4[H2(T-pSO3-
PP)] in DMF,23a but details (e.g., concentrations of Ru3(CO)12
and porphyrin) were not given, and others showed later that
this metalation is complete in 4 h when using a 3:1 Ru/porphyrin
molar ratio.24 Additives such as bis(triphenylphosphine)iminium
chloride10c,25 or 2,4,6-trimethylpyridine10c are reported to be
beneficial in certain cases. Ruthenium metalations of neutral,
(5) Buchler, J. W.; Dreher, C.; Fu¨nzel, F. M. Struct. Bonding (Berlin)
1995, 84, 1.
(6) For example, (a) Collman, J. P.; Barnes, C. E.; Brothers, P. J.; Collins,
T. J.; Ozawa, T.; Gallucci, J. C.; Ibers, J. A. J. Am. Chem. Soc. 1984,
106, 5151. (b) Camenzind, M. J.; James, B. R.; Dolphin, D. J. Chem.
Soc., Chem. Commun. 1986, 1137. (c) Dubourdeaux, P.; Tavare`s, M.;
Grand, A.; Ramasseul, R.; Marchon, J.-C. Inorg. Chim. Acta 1995,
240, 657. (d) Che, C.-M.; Yu, W.-Y. Pure Appl. Chem. 1999, 71,
281. (e) Brothers, P. J. AdV. Organomet. Chem. 2001, 46, 223. (f)
Che, C.-M.; Huang, J.-S. Coord. Chem. ReV. 2002, 231, 151. (g) Gallo,
E.; Caselli, A.; Ragaini, F.; Fantauzzi, S.; Masciocchi, N.; Sironi, A.;
Cenini, S. Inorg. Chem. 2005, 44, 2039.
(7) (a) Imamura, T.; Fukushima, K. Coord. Chem. ReV. 2000, 198, 133.
(b) Che, C-M.; Ho, C.-M.; Huang, J-S. Coord. Chem. ReV. 2007, 251,
2145.
(8) (a) Vernik, I.; Stynes, D. V. Inorg. Chem. 1998, 37, 10. (b) Funatsu,
K.; Imamura, T.; Ichimura, A.; Sasaki, Y. Inorg. Chem. 1998, 37,
4986. (c) Leung, W.-H.; Chim, J. L. C.; Lai, W.; Lam, L.; Wong,
W.-T.; Chan, W. H.; Yeung, C.-H. Inorg. Chim. Acta 1999, 290, 28.
(d) Prodi, A.; Indelli, M. T.; Kleverlaan, C. J.; Scandola, F.; Alessio,
E.; Gianferrara, T.; Marzilli, L. G. Chem.sEur. J. 1999, 5, 2668. (e)
Darling, S. L.; Stulz, E.; Feeder, N.; Bampos, N.; Sanders, J. K. M.
New J. Chem. 2000, 24, 261. (f) Chichack, K.; Jacquemard, U.; Branda,
N. R. Eur. J. Inorg. Chem. 2002, 357. (g) Che, C.-M.; Huang, J.-S.;
Zhang, J.-L. C. R. Chimie 2003, 6, 1105. (h) Cammidge, A. N.; Berber,
G.; Chambrier, I.; Hough, P. W.; Cook, M. J. Tetrahedron 2005, 61,
4067. (i) Cho, T. J.; Shreiner, C. D.; Hwang, S-H.; Moorefield, C. N.;
Courneya, B.; Godinez, L. A.; Manriquez, J.; Jeong, K-U.; Cheng,
S. Z. D.; Newkome, G. R. Chem. Commun. 2007, 4456. (j) Sokkal-
ingam, P.; Santra, S.; Mangalampalli, R. J. Porphyrins Phthalocyanines
2007, 11, 85.
(15) Massoudipour, M.; Pandey, K. K. Inorg. Chim. Acta 1989, 160, 115.
(16) (a) Johnson, B. F. G.; Lewis, J. Inorg. Synth. 1972, 13, 92. (b) James,
B. R.; Rempel, G. L.; Teo, W. K. Inorg. Synth. 1976, 16, 45. (c)
Mantovani, A.; Cenini, S. Inorg. Synth. 1976, 16, 47. (d) Bruce, M. I.;
Jensen, C. M.; Jones, N. L. Inorg. Synth. 1989, 26, 259. (e) Roveda,
C.; Cariati, E.; Lucenti, E.; Roberto, D. J. Organomet. Chem. 1999,
580, 117. (f) Shimoyama, I.; Hachiya, T.; Mizuguchi, M.; Kakamura,
T.; Kaihara, M.; Ikariya, T. J. Organomet. Chem. 1999, 584, 197. (g)
Faure´, M.; Saccavini, C.; Lavigne, G. Chem. Commun. 2003, 1578.
(17) (a) Mathur, B. B.; Krishna, G. In Chemical Warfare Agents; Somani,
S. M., Ed.; Academic Press: San Diego, 1992; pp 237-254. (b)
Jumbelic, M. I. J. Forensic Sci. 1998, 43, 228. (c) Pankow, D. In
Carbon Monoxide Toxicity; Penney, D. G., Ed.; CRC Press: Boca
Raton, 2000; Chapter 1, pp 1-17.
(9) (a) Offord, D. A.; Sachs, S. B.; Ennis, M. S.; Eberspacher, T. A.;
Griffin, J. H.; Chidsey, C. E. D.; Collman, J. P. J. Am. Chem. Soc.
1998, 120, 4478. (b) Poriel, C.; Ferrand, Y.; Juillard, S.; Le Maux,
P.; Simonneaux, G. Tetrahedron 2004, 60, 145. (c) Burri, E.; Severin,
K. Chimia 2006, 60, 182. (d) Annoni, E.; Pizzotti, M.; Ugo, R.; Quici,
S.; Morotti, T.; Casati, N.; Macchi, P. Inorg. Chim. Acta 2006, 359,
3029.
(18) Tavare`s, M.; Ramasseul, R.; Marchon, J.-C.; Ville´e-Goyet, D.;
Gramain, J.-C. J. Chem. Res., Synop. 1994, 74.
(19) Ariel, S.; Dolphin, D.; Domazetis, G.; James, B. R.; Leung, T. W.;
Rettig, S. J.; Trotter, J.; Williams, G. M. Can. J. Chem. 1984, 62,
755.
(10) (a) Hambright, P. Inorg. Chim. Acta 1989, 157, 95. (b) James, B. R.;
Meng, G. G.; Posakony, J. J.; Ravensbergen, J. A.; Ware, C. J.; Skov,
K. A. Met.-Based Drugs 1996, 3, 85. (c) Hartmann, M.; Robert, A.;
Duarte, V.; Keppler, B. K.; Meunier, B. J. Biol. Inorg. Chem. 1997,
2, 427. (d) Schmitt, F.; Govindaswamy, P.; Su¨ss-Fink, G.; Ang, W. H.;
Dyson, P. J.; Juillerat-Jeanneret, L.; Therrien, B. J. Med. Chem. 2008,
51, 1811.
(20) (a) Tsutsui, M.; Ostfeld, D.; Francis, J.; Hoffman, L. M. J. Coord.
Chem. 1971, 1, 115. (b) Tsutsui, M.; Ostfeld, D.; Hoffman, L. M.
J. Am. Chem. Soc. 1971, 93, 1820. (c) Cullen, D.; Meyer, E., Jr.;
Srivastava, T. S.; Tsutsui, M. J. Chem. Soc., Chem. Commun. 1972,
584. (d) Eaton, G. R.; Eaton, S. S. J. Am. Chem. Soc. 1975, 97, 235.
(e) Antipas, A.; Buchler, J. W.; Gouterman, M.; Smith, P. D. J. Am.
Chem. Soc. 1978, 100, 3015. (f) Birnbaum, E. R.; Schaefer, W. P.;
Labinger, J. A.; Bercaw, J. E.; Gray, H. B. Inorg. Chem. 1995, 34,
1761.
(11) (a) Buchler, J. W. In The Porphyrins; Dolphin, D., Eds.; Academic
Press: New York, 1977; Vol. I, Chapter 10. (b) Wijesekera, T. P.;
Dolphin, D. In Metalloporphyrins in Catalytic Oxidations; Sheldon,
R. A., Ed.; Marcel Dekker: New York, 1994, Chapter 7. (c) Hambright,
P. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard,
R., Eds.; Academic Press: New York, 2000; Vol. 3, Chapter 18.
(12) RuCl3, the most common Ru source, available as RuCl3 · 3H2O, is
known to be a mixture of RuIII and RuIV. Hui, B. C.; James, B. R.
Can. J. Chem. 1974, 52, 348.
(21) Rillema, D. P.; Nagle, J. K.; Barringer, L. F., Jr.; Meyer, T. J. J. Am.
Chem. Soc. 1981, 103, 56.
(22) Tsutsui, M.; Ichikawa, M.; Vohwinkel, F.; Suzuki, K. J. Am. Chem.
Soc. 1966, 88, 854.
(23) (a) Pawlik, M.; Hoq, M. F.; Shepherd, R. E. J. Chem. Soc., Chem.
Commun 1983, 1467. (b) Liang, Y.; An, X. Acta Chim. Sin. 1986, 44,
964. (c) Ashley, K. R.; Huang, H. Inorg. Chim. Acta 1996, 248, 23.
(24) Lejune, M.; Jeunesse, C.; Matt, D.; Kyritsakas, N.; Welter, R.;
Kintzinger, J.-P. J. Chem. Soc., Dalton Trans. 2002, 1642.
(25) Lavigne, G.; Kaesz, H. D. J. Am. Chem. Soc. 1984, 106, 4647.
(13) Fleisher, E. B.; Thorp, R.; Venerable, D. Chem. Commun. 1969, 475.
(14) (a) Chow, B. C.; Cohen, I. A. Bioinorg. Chem. 1971, 1, 57. (b) Bonnet,
J. J.; Eaton, S. S.; Eaton, G. R.; Holm, R. H.; Ibers, J. A. J. Am.
Chem. Soc. 1973, 95, 2141.
Inorganic Chemistry, Vol. 47, No. 17, 2008 7895