K. G. R. Masschelein, C. V. Stevens / Tetrahedron Letters 49 (2008) 4336–4338
4337
P(O)(OEt)2
P(O)(OEt)2
P(O)(OEt)2
N P(O)(OEt)2
MgSO4
CH2Cl2
NCS
CCl4
O
P(O)(OEt)2
R1
N
+
R1
Cl
R1
H
H2N
P(O)(OEt)2
rt, 4 - 5 h
rt or Δ
R2
H
H
R2
R2
1
2
3
4
Scheme 1.
Table 2
Synthesis of bisphosphono-azadienes 6
O
O
SO2Cl2
rt
R1
Cl
R1
H
H
R1
R2
Product
Crude yielda (%)
Yieldb (%)
R2
R2
5a-e
Ph
Me
Ph
Ph
Ph
Cl
6a
6b
6c
6d
6e
6f
88
63
2a-e
92
58
Complex
95
16
68
Scheme 2.
(CH2)5(c-Hex)
Et
Me
Et
Me
93
56
93c/89d
63c/60d
Table 1
Synthesis of a-chlorinated aldehydes 5
a
b
c
After workup.
After column chromatography.
Using the chlorinated aldehyde.
Using the brominated aldehyde.
Entry
Compound
Reaction time (min)
R1
R2
Yielda (%)
d
2a
2b
2c
2d
2e
5a
5b
5c
5d
5e
30
30
900
30
Ph
Me
Ph
Ph
Ph
H
75
71
61
68
67
(CH2)5 (c-Hex)
Et
In conclusion, a straightforward synthesis of a new class of
30
Et
phosphono-azadienes, that is, 1,1-bisphosphono-2-aza-1,3-dienes,
was elaborated using a 1,4-dehydrohalogenation of phosphonyl-
ated a-chloroimines as a key step. The synthetic reactivity study
of this new class of electron-deficient azadienes is currently under
investigation and will be reported in due course.
a
After distillation.
O
O
a) ref. 9
Me
X
H
H
Acknowledgement
b) ref. 10
Me
Me
2f
Me
Financial support for this research from the BOF (Bijzonder
Onderzoeksfonds Universiteit Gent, Research Fund Ghent Univer-
sity) is gratefully acknowledged.
a) 5f X = Cl
b) 5g X = Br
Scheme 3.
References and notes
observed. 1,4-Dehalogenation was already occurring which could
be confirmed by 1H NMR and 31P NMR spectroscopy. When trying
to purify the halogenated imines by chromatography, only the 1,1-
bisphosphono-2-aza-1,3-dienes could be isolated.
1. Graham, R.; Russell, G. Ann. N.Y. Acad. Sci. 2006, 1068, 367.
2. Docampo, R.; Moreno, S. N. J. Curr. Drug Targets 2001, 1, 51.
3. Jayakumar, S.; Ishar, M. P. S.; Mahajan, M. P. Tetrahedron 2002, 58, 379.
4. Boger, D. L. Tetrahedron 1983, 39, 2869.
Because of the ease of 1,4-dehalogenation, a one-step procedure
for the synthesis of the 1,1-bisphosphono-2-aza-1,3-dienes starting
from a-haloaldehydes 5 and tetraethyl aminomethylbisphospho-
nate 1 was evaluated. Therefore, 1.1 equiv of triethylamine was
added to the in situ formed a-halogenated imines 4. 31P NMR of
the reaction mixture showed the formation of the desired azadienes
6. After workup,11 the 1,1-bisphosphono-2-aza-1,3-dienes were ob-
tained as yellowish oils. In case of 6c, a complex mixture was
formed after workup. Following the reaction, 31P NMR revealed that
condensation of 5c and 1 immediately led to a lot of side products.
In general, in order to obtain the azadienes analytically pure,
column chromatography was performed, however this resulted
in a significant drop of the yields (Scheme 4 and Table 2).
5. (a) Boger, D. L. Chem. Rev. 1986, 86, 781; (b) Boger, D. L.; Patel, M. Prog.
Heterocycl. Chem. 1989, 1, 30.
6. (a) Onys’ko, P. P.; Maidanovich, N. K.; Kim, T. V.; Kiseleva, E. I.; Sinitsa, A. D. Zh.
Obshch. Khim. 1989, 68, 573; (b) Palacios, F.; Gil, M. J.; Martinez de Marigorta,
E.; Rodriguez, M. Tetrahedron Lett. 1999, 40, 2411; (c) Stevens, C.; Gallant, M.;
De Kimpe, N. Tetrahedron Lett. 1999, 40, 3457; (d) Palacios, F.; Gil, M. J.;
Martinez de Marigorta, E.; Rodriguez, M. Tetrahedron 2000, 56, 6319; (e)
Palacios, F.; Ochoa de Retana, A. M.; Martinez de Marigorta, E.; Rodriguez, M.;
Pagalday, J. Tetrahedron 2003, 59, 2617; (f) Vanderhoydonck, B.; Stevens, C. V.
Synthesis 2004, 722; (g) Palacios, F.; Herrán, E.; Alonso, C.; Rubiales, G. Arkivoc
2007, iv, 397–407; (h) Masschelein, K. G. R.; Stevens, C. V. J. Org. Chem. 2007, 72,
9248.
7. Kantoci, D.; Denike, J. K.; Wechter, W. J. Synth. Commun. 1996, 26, 2037. The
debenzylation of tetraethyl dibenzylaminomethylbisphosphonate was
performed with Pd–C (20%) in MeOH at room temperature under
atmosphere (stirring for 16 h).
a H2-
8. Typical procedure for the synthesis of a-chloroaldehydes 5: to the aldehyde in a
flask equipped with an air cooler was added carefully 1.05 equiv of SO2Cl2 at
P(O)(OEt)2
MgSO4
O
P(O)(OEt)2
Et3N
CH2Cl2
rt, 4 h
P(O)(OEt)2
P(O)(OEt)2
N
P(O)(OEt)2
R1
R2
N
X
R1
+
H
P(O)(OEt)2
X
R1
H2N
rt, 30'
H
R2
H
R2
6
4
1
5
Scheme 4.