properties including anticancer,2b,2c,7 anti-inflammatory,3b,3c
antiplatelet,3a,4a and neuro-protective5a activities. For ex-
ample, aristolactam BII (cepharanone B, 1)3c has been shown
to inhibit T and B lymphocyte proliferation as well as
displaying cytotoxic activity, while aristolactam FI (pipero-
lactam A, 3)5a displays inhibitory effects on NO generation
by RAW264.7 macropharges in response to lipopolysaccha-
rides. Although the cytotoxicity of aristolactams is well-
known, structure-activity relationships have not been ex-
plored mainly as a consequence of the synthetic difficulties
associated with preparing a diverse array of aristolactam
analogues.
Scheme 1. Construction of a Phenanthrene Lactam via
Suzuki-Miyaura Coupling/Aldol Condensation Cascade
Reaction
Considerable effort has been devoted to the synthesis of
aristolactams.8 For example, in pioneering studies, Castedo
explored inter- and intramolecular benzyne cycloadditions
of enamides, photochemical cyclizations of iodostilbenic
precursors, and lactone ring contractions of dibenzochro-
manones.9 Couture has also developed an approach to the
construction of phenanthrene lactams that relies on aryne-
mediated cyclization of a phosphorylated amino carbanion
followed by sequential Horner reaction and radical cycliza-
tion.10
Our protocol was first examined by using a direct one-
pot cascade reaction of 4-bromoisoindolin-1-one 712 with
2-formylphenylboronic acid (8) under typical Suzuki-Miyaura
coupling13 conditions promoted by microwave irradiation.14
The results of this exploratory study are illustrated in Ta-
ble 1. Among the various palladium catalysts examined,
In a previous report,11 we described a strategy for the direct
one-pot synthesis of phenanthrenes that employs a Suzuki-
Miyaura coupling/aldol condensation cascade sequence. Here
we report the application of this procedure to the total
synthesis of aristolactams, including aristolactam BII, aris-
tolactam BIII, aristolactam FI, N-methyl piperolactam A, and
sauristolactam. In addition, we have synthesized several
unnatural aristolactam analogues.
Table 1. Direct One-Pot Synthesis of Phenanthrene Lactam 10a
A crucial feature of the new synthetic strategy arises from
the recognition that phenanthrene lactam (I) can be synthe-
sized from the reaction of 4-bromoisoindolin-1-one (II) with
2-formylarylboronic acid (III) via a Suzuki-Miyaura coupling/
aldol-type condensation cascade reaction (Scheme 1). More-
over, the key intermediate, 4-bromoisoindolin-1-one (II)
derives from commercially available 3,4-dimethoxytoluene
(6) via several straightforward functional group transforma-
tions.
yield (%)b
temp
entry
Pd
base
solvents
(°C)
9
10
1
2
3
4
5
Pd(OAc)2
Pd(PPh3)2Cl2 Cs2CO3 dioxane
Pd(PPh3)4
Pd(PPh3)4
Pd(PPh3)4
Cs2CO3 dioxane
150
150
150
170e
170e
0
7
0
50
88
6
90
15
0
Cs2CO3 dioxane
Cs2CO3 dioxane
Cs2CO3 toluene
dioxane/
Cs2CO3
Cs2CO3
K3PO4
30
(5) (a) Kim, S. R.; Sung, S. H.; Kang, S. Y.; Koo, K. A.; Kim, S. H.;
Ma, C. J.; Lee, H.-S; Park, M. J.; Kim, Y. C. Planta Med. 2004, 70, 391–
396. (b) Rao, K. V.; Reddy, G. C. S. J. Nat. Prod. 1990, 53, 309–312.
(6) Houghton, P. J.; Ogutveren, M. Phytochemistry 1991, 30, 253–254.
(7) (a) Park, J. D.; Baek, N. I.; Lee, Y. H.; Kim, S. I. Arch. Pharm.
Res. 1996, 19, 559–561. (b) Couture, A.; Deniau, E.; Grandclaudon, P.;
Rybalko-Rosen, H.; Le´once, S.; Pfeiffer, B.; Renard, P. Bioorg. Med. Chem.
Lett. 2002, 12, 3557–3559.
6
7
8
9
Pd(PPh3)4
Pd(PPh3)4
Pd(PPh3)4
Pd(PPh3)4
H2Oc
toluene/
150
62
0
6
99
89
0
EtOHd 150
toluene/
EtOHd 150
toluene/
0
(8) (a) Yao, T.; Larock, R. C. J. Org. Chem. 2005, 70, 1432–1437. (b)
Benesch, L.; Bury, P.; Guillaneux, D.; Houldsworth, S.; Wang, X.; Snieckus,
V. Tetrahedron Lett. 1998, 39, 961–964.
Na2CO3
EtOHd 150
47
a Reaction conditions: isoindolinone 7 (0.5 mmol), boronic acid 8 (0.6
mmol, 1.2 equiv), Pd (4 mol %), base (1.5 mmol), solvents (3 mL),
microwave, 10 min. b Isolated yield. c Dioxane/H2O ) 2.7/0.3 mL.
d Toluene/EtOH ) 2/1 mL. e Microwave heating for 20 min.
(9) (a) Estevez, J. C.; Villaverde, M. C.; Estevez, R. J.; Castedo, L
Tetrahedron Lett. 1992, 33, 5145–5146. (b) Castedo, L.; Guitian, E.; Saa,
J. M.; Suau, R. Heterocycles 1982, 19, 279–280. (c) Castedo, L.; Guitian,
E.; Saa, J. M.; Suau, R. Tetrahedron Lett. 1982, 23, 457–458. (d) Atanes,
N.; Castedo, L.; Guitian, E.; Saa, C.; Saa, J. M.; Suau, R. J. Org. Chem.
1991, 56, 2984–2988. (e) Estevez, J. C.; Estevez, R. J.; Castedo, L.
Tetrahedron 1995, 51, 10801–10810. (f) Estevez, J. C.; Estevez, R. J.;
Guitian, E.; Villaverde, M. C.; Castedo, L. Tetrahedron Lett. 1989, 30, 5785–
5786.
Pd(PPh3)4 was found to be the most effective, affording
phenanthrene lactam 10 in 50% yield along with the
intermediate, biphenyl 9, in 15% yield (entry 3). When the
reaction temperature was increased to 170 °C, 10 was
obtained in an improved 88% yield with complete consump-
tion of biphenyl 9 (entry 4). After considerable experimenta-
(10) (a) Couture, A.; Deniau, E.; Grandclaudon, P.; Lebrun, S. Synlett
1997, 1475–1477. (b) Couture, A.; Deniau, E.; Grandclaudon, P.; Hoarau,
C. J. Org. Chem. 1998, 63, 3128–3132. (c) Rys, V.; Couture, A.; Deniau,
E.; Grandclaudon, P. Eur. J. Org. Chem. 2003, 1231–1237.
(11) Kim, Y. H.; Lee, H.; Kim, Y. J.; Kim, B. T.; Heo, J.-N. J. Org.
Chem. 2008, 73, 495–501.
3544
Org. Lett., Vol. 10, No. 16, 2008