P. Anjanappa et al. / Tetrahedron Letters 49 (2008) 4585–4587
4587
2983; (p) Urgaonkar, S.; Verkade, J. G. J. Org. Chem. 2004, 69, 9135; (q) Charles,
M. D.; Schultz, P.; Buchwald, S. L. Org. Lett. 2005, 7, 3965; (r) Xie, X.; Zhang, T.
Y.; Zhang, Z. J. Org. Chem. 2006, 71, 6522; (s) Marion, N.; Navarro, O.; Mei, J.;
Stevens, E. D.; Scott, N. M.; Nolan, S. P. J. Am. Chem. Soc. 2006, 128, 4101; (t)
Klingensmith, L. M.; Strieter, E. R.; Barder, T. E.; Buchwald, S. L. Organometallics
2006, 25, 82; (u) Shekhar, S.; Ryberg, P.; Hartwig, J. F.; Mathew, J. S.;
Blackmond, D. G.; Strieter, E. R.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128,
3584; (v) Li, J. J.; Wang, Z.; Mitchell, L. H. J. Org. Chem. 2007, 72, 3606.
2. Nickel-catalyzed aryl amination: (a) Desmarets, C.; Schneider, R.; Fort, Y. J. Org.
Chem. 2002, 67, 3029; (b) Omar-Amrani, R.; Thomas, A.; Brenner, E.; Schneider,
R.; Fort, Y. Org. Lett. 2003, 5, 2311; (c) Chen, C.; Yang, L.-M. Org. Lett. 2005, 7,
2209; (d) Kelly, R. A., III; Scott, N. M.; Dıez-Gonzalez, S.; Stevens, E. D.; Nolan, S.
P. Organometallics 2005, 24, 3442; (e) Chen, C.; Yang, L.-M. J. Org. Chem. 2007,
72, 6324.
3. Copper-catalyzed aryl amination: (a) Antilla, J. C.; Buchwald, S. L. Org. Lett.
2001, 3, 2077; (b) Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2003, 5, 793; (c) Okano,
K.; Tokuyama, H.; Fukuyama, T. Org. Lett. 2003, 5, 4987; (d) Lu, Z.; Twieg, R. J.;
Huang, S. D. Tetrahedron Lett. 2003, 44, 6289; (e) Kwong, F. Y.; Buchwald, S. L.
Org. Lett. 2003, 5, 793; (f) Antilla, J. C.; Baskin, J. M.; Barder, T. E.; Buchwald, S. L.
J. Org. Chem. 2004, 69, 5578; (g) Ran, C.; Dai, Q.; Harvey, R. G. J. Org. Chem. 2005,
70, 3724; (h) Hu, T.; Li, C. Org. Lett. 2005, 7, 2035; (i) Rao, H.; Fu, H.; Jiang, Y.;
Zhao, Y. J. Org. Chem. 2005, 70, 8107; (j) Moriwaki, K.; Satoh, K.; Takada, M.;
Ishino, Y.; Ohno, T. Tetrahedron Lett. 2005, 46, 7559; (k) Lu, Z.; Twieg, R. J.
Tetrahedron 2005, 61, 903; (l) Jerphagnon, T.; van Klink, G. P. M.; de Vries, J. G.;
van Koten, G. Org. Lett. 2005, 7, 5241; (m) Strieter, E. R.; Blackmond, D. G.;
Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4120; (n) Jerphagnon, T.; van Klink,
G. P. M.; de Vries, J. G.; van Koten, G. Org. Lett. 2005, 7, 5241; (o) Zhang, Z.; Mao,
J.; Zhu, D.; Wu, F.; Chen, H.; Wan, B. Tetrahedron 2006, 62, 4435; (p) Wolf, C.;
Liu, S.; Mei, X.; August, A. T.; Casimir, M. D. J. Org. Chem. 2006, 71, 3270; (q)
Barros, O. S. R.; Nogueira, C. W.; Stangherlin, E. C.; Menezes, P. H.; Zeni, G. J. Org.
Chem. 2006, 71, 1552; (r) Shafir, A.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128,
8742; (s) Altman, R. A.; Buchwald, S. L. Org. Lett. 2006, 8, 2779; (t) Altman, R. A.;
Buchwald, S. L. Org. Lett. 2007, 9, 643; (u) Altman, R. A.; Koval, E. D.; Buchwald,
S. L. J. Org. Chem. 2007, 72, 6190.
catalyst system in dioxane at 100 °C for 15 h. Aryl bromides with
various functional groups such as cyano, ester, nitro, and aldehyde
groups worked well under the above optimized conditions without
undergoing any other side reactions (Table 1).12 Unfortunately, no
reaction occurred when the same conditions were applied to an
aryl bromide containing an electron-donating group (Table 1, entry
15).13
Having been successful with aryl bromides, we next extended
this reaction to aryl chlorides. Aryl chloride bond activation is an
industrially important field of research due to the lower cost of aryl
chlorides compared with aryl bromides and aryl iodides.14 We
have used the same reaction conditions for the coupling of SES-
NH2 with aryl chlorides and the temperature was increased from
100 °C to 120 °C. The reaction worked well with aryl chlorides hav-
ing different substituents such as cyano, ester, keto, nitro, and alde-
hyde, and the yields obtained were more than 80% in most cases.
This reaction was not successful with chlorobenzene and aryl chlo-
rides having electron-donating groups. Heterocyclic aryl chlorides
also reacted with SES-NH2 (Table 2).
The aminated aryl trimethylsilylethane sulfonamide products
were very stable and could be used for further transformations
without affecting the sulfonamide group. The SES group was
cleaved selectively from the sulfonamide using CsF in DMF without
affecting other functional groups (Table 1, entry 7).15 We carried
out the deprotection of SES with several products having acid sen-
sitive groups, for example, the SES group was deprotected selec-
tively from the product containing an acid sensitive tert-butyl
ester.
4. Ammonia has been used recently as an amine for palladium-catalyzed aryl
amination: (a) Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 10028; (b)
Surry, D. S.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 10354.
In summary, we have reported the synthesis of several sulfo-
nated aryl anilines from aryl bromides and aryl chlorides using
SES-NH2. The SES group can be cleaved selectively without affect-
ing other functional groups and establishes SES-NH2 as an excel-
lent ammonia surrogate for aryl amination reactions. Further
studies on N-substituted SES-NH2 are in progress.
5. Liu, Y.; Muchowski, J. M.; Putman, D. G. Tetrahedron Lett. 1998, 39, 1313.
6. (a) Wolfe, J. P.; Åhman, J.; Sadighi, J. P.; Singer, R. A.; Buchwald, S. L. Tetrahedron
Lett. 1997, 38, 6367; (b) Mann, G.; Hartwig, J. F.; Driver, M. S.; Fernandez-Rivas,
C. J. Am. Chem. Soc. 1998, 120, 827; (c) Cioffi, C. L.; Berlin, M. L.; Herr, R. J. Synlett
2004, 841.
7. (a) Lee, S.; Jorgensen, M.; Hartwig, J. F. Org. Lett. 2001, 3, 2729; (b) Huang, X.;
Buchwald, S. L. Org. Lett. 2001, 3, 3417.
8. (a) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101; (b) Yin, J.; Buchwald, S. L. J.
Am. Chem. Soc. 2002, 124, 6043; (c) Okano, K.; Tokuyama, H.; Fukuyama, T. Org.
Lett. 2003, 5, 4987; (d) He, H.; Wu, Y.-Jin. Y.-J. Tetrahedron Lett. 2003, 44, 3385;
(e) Deng, W.; Liu, L.; Zhang, C.; Liu, M.; Guo, Q.-X. Tetrahedron Lett. 2005, 46,
7295.
9. (a) Weinreb, S. M.; Demko, D. M.; Lessen, T. A.; Demers, J. P. Tetrahedron Lett.
1986, 27, 2099; (b)2-(Trimethylsilyl)-ethanesulfonamide (SES-NH2): Protective
Groups in Organic Synthesis; Greene, T. W., Wuts, P. G. M., Eds., third ed.; Wiley:
Acknowledgments
The authors, P.A., D.M., and K.S. thank Goutam Das, CEO, Syn-
gene international Ltd for granting permission to carry out this
work at Syngene. M.S. thanks Bharathidasan and Anna Universities
for all the support.
New York, 1999;
p
612; (c) Weinreb, S. M.; Ralbovsky, J. L.
(Trimethylsilyl)ethanesulfonyl Chloride. In Handbook of Reagents for Organic
Synthesis: Activating Agents and Protecting Groups; Pearson, A. J., Roush, W. J.,
Eds.; Wiley: Chichester, 1999; p 425; (d) Kocienski, P. J. (Trimethylsilyl)-
ethanesulfonyl (SES) Derivatives. In Protecting Groups; Corrected ed.; Enders, D.,
Noyori, R., Trost, B. M., Eds.; Thieme: Stuttgart, New York, 2000; p. 215.; (e)
Chambert, S.; Desire, J.; Decout, J.-L. Synthesis 2002, 2319.
Supplementary data
Supplementary data (the experimental and analytical data for
new compounds) associated with this article can be found, in the
10. (a) Weinreb, S. M.; Chase, C. E.; Wipf, P.; Venkatraman, S. Org. Synth. 1998, 75,
161; (b) Huang, J.; Widlanski, T. S. Tetrahedron Lett. 1992, 33, 2657.
11. Parker, L. L.; Gowans, N. D.; Jones, S. W.; Robins, D. J. Tetrahedron 2003, 59,
10165.
12. General procedure: An oven-dried Schlenk tube was charged with Pd(OAc)2
(6.7 mg, 0.03 mmol), Xantphos (34.7 mg, 0.06 mmol), SES-NH2 (217 mg,
1.2 mmol) and Cs2CO3 (650 mg, 2.0 mmol). The Schlenk tube was evacuated
and back-filled with argon. Ethyl 4-bromobenzoate (230 mg, 1.0 mmol) and
dioxane (7 ml) were added and the Schlenk tube was then sealed with a Teflon
screw cap and placed in a preheated oil bath at 100 °C for 15 h for aryl
bromides and 120 °C for aryl chlorides. After cooling to room temperature,
water was added and the reaction mixture was extracted with ethyl acetate.
The combined organic layer was washed with brine, dried over Na2SO4,
filtered, and concentrated in vacuo. The product was purified by flash
chromatography. Yield: 324 mg, 98%.
13. We have observed that aryl bromides with electron-donating groups coupled
with SES-NH2 in the presence of a copper catalyst. This result will be published
elsewhere.
14. (a) Bedford, R. B.; Cazin, C. S. J.; Holder, D. Coord. Chem. Rev. 2004, 248, 2283; (b)
Beller, M.; Zapf, A. Top. Catal. 2002, 19, 101.
References and notes
1. Palladium-catalyzed aryl amination: (a) Hartwig, J. F. Handbook of
Organopalladium Chemistry for Organic Synthesis 2002, 1, 1051; (b) Muci, A.
R.; Buchwald, S. L. Top. Curr. Chem. 2002, 219, 131; (c) Hartwig, J. F. Angew.
Chem., Int. Ed. 1998, 37, 2046; (d) Ali, M. H.; Buchwald, S. L. J. Org. Chem. 2001,
66, 2560; (e) Kuwano, R.; Utsunomiya, M.; Hartwig, J. F. J. Org. Chem. 2002, 67,
6479; (f) Stambuli, J. P.; Kuwano, R.; Hartwig, J. F. Angew. Chem., Int. Ed. 2002,
41, 4746; (g) Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. J. Org. Chem.
2002, 67, 5553; (h) Viciu, M. S.; Germaneau, R. F.; Navarro-Fernandez, O.;
Stevens, E. D.; Nolan, S. P. Organometallics 2002, 21, 5470; (i) Stauffer, S. R.;
Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 6977; (j) Hooper, M. W.; Utsunomiya,
M.; Hartwig, J. F. J. Org. Chem. 2003, 68, 2861; (k) Huang, X.; Anderson, K. W.;
Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653;
(l) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125,
13978; (m) Viciu, M. S.; Kelly, R. A., III; Stevens, E. D.; Naud, F.; Studer, M.;
Nolan, S. P. Org. Lett. 2003, 5, 1479; (n) Urgaonkar, S.; Xu, J.-H.; Verkade, J. G. J.
Org. Chem. 2003, 68, 8416; (o) Rataboul, F.; Zapf, A.; Jackstell, R.; Harkal, S.;
Riermeier, T.; Monsees, A.; Dingerdissen, U.; Beller, M. Chem. Eur. J. 2004, 10,
15. Weinreb, S. M.; Demko, D. M.; Lessen, T. A.; Demers, J. P. Tetrahedron Lett. 1986,
27, 2099.