RSC Advances
Paper
observed in the BT series, the triazole rings together with the
alkoxyphenyl peripheral groups lead to an increase in the
electron affinity. When the peripheral groups are alkoxy-
benzoyloxyphenyl groups, i.e., BTBs, the electron affinity
decreases in all cases with respect to the parent 2,4,6-triphenyl-
8 M. Mathew and Q. Li, in Self-organized Organic
Semiconductors. From Materials to Device Applications, ed. Q.
Li, Wiley, 2011.
9 E. K. Fleischmann and R. Zentel, Angew. Chem., Int. Ed.,
2013, 52, 8810–8827.
¨
1,3,5-triazine, showing a similar behaviour to that of alkoxy- 10 W. Pisula, M. Zorn, J. Y. Chang, K. Mullen and R. Zentel,
benzoyloxyphenyl substituted tris(triazolyl)triazines.55
Macromol. Rapid Commun., 2009, 30, 1179–1202.
11 R. J. Bushby and K. Kawata, Liq. Cryst., 2011, 38, 1415–1426.
12 S. Kumar, Chem. Soc. Rev., 2006, 35, 83–109.
13 Chemistry of Discotic Liquid Crystals, ed. S. Kumar, CRC
Press, Boca Raton, 2011.
Conclusions
Self-assembled structures with a novel luminescent and elec-
troactive bent-core have been synthesised. The bent-core forces 14 C. Tschierske, Angew. Chem., Int. Ed., 2013, 52, 8828–8878.
the molecules to be arranged with their molecular dipoles in an 15 C. Tschierske, Curr. Opin. Colloid Interface Sci., 2002, 7, 69–
antiparallel manner, a situation that leads to hexagonal
80.
columnar mesophases over broad temperature ranges. It is 16 M. Lehmann, in Top. Curr. Chem. Liquid Crystals – Materials
remarkable how strongly these molecules tend to self-assemble
into regular stacks despite their non-discoid shape.
Design and Self-assembly, ed. C. Tschierske, Springer, Berlin
Heidelberg, 2012, vol. 318, pp. 193–224.
Compounds with six terminal chains exhibit compact stacking 17 C. Tschierske, Chem. Soc. Rev., 2007, 36, 1930–1970.
ˆ
with intracolumnar order, and arrangements in a periodic 18 M. Gharbia, A. Gharbi, H. T. Nguyen and J. Malthete, Curr.
twisted mode. In the particular case of BT6, two hexagonal Opin. Colloid Interface Sci., 2002, 7, 312–325.
columnar mesophases with a different number of molecules per 19 H. T. Nguyen, C. Destrade and J. Malthete, Adv. Mater., 1997,
columnar slice has been found. This different thermally 9, 375–388.
dependent mode of arrangement for the molecules of BT6 gives 20 B. Donnio, S. Buathong, I. Bury and D. Guillon, Chem. Soc.
ˆ
rise to different emission spectra. Moreover, LUMO values for
the BT series are appropriate for electron transport.
Rev., 2007, 36, 1495–1513.
21 B. M. Rosen, C. J. Wilson, D. A. Wilson, M. Peterca,
M. R. Imam and V. Percec, Chem. Rev., 2009, 109, 6275–
6540.
22 D. Guillon and R. Deschenaux, Curr. Opin. Solid State Mater.
Sci., 2002, 6, 515–525.
Acknowledgements
´
The authors thank the Gobierno de Aragon and European
Union, Fondo Social Europeo (FSE) (research group E04), and 23 M. Marcos, A. Omenat and J. L. Serrano, C. R. Chim., 2003, 6,
the Spanish Ministerio de Economia Competitividad 947–957.
(MINECO) and European Union, Fondo Europeo para el 24 M. Sawamura, K. Kawai, Y. Matsuo, K. Kanie, T. Kato and
Desarrollo Regional (FEDER) (Project numbers MAT2012- E. Nakamura, Nature, 2002, 419, 702–705.
38538-CO3-01, MAT2012-38538-CO3-02 and CTQ2012-35692), 25 G. Cometti, E. Dalcanale, A. Du Vosel and A. Levelut, Chem.
and the Gobierno Vasco (IT-449-10) for nancial support.
Commun., 1990, 163–165.
Thanks are given to: Nuclear Magnetic Resonance, Mass Spec- 26 L. Wang, Z. Sun, X. Pei and Y. Zhu, Chem. Phys., 1990, 142,
y
trometry, Elemental Analysis and Thermal Analysis Services of
the CEQMA, Universidad de Zaragoza-CSIC (Spain).
335–343.
27 T. M. Swager and B. Xu, J. Inclusion Phenom. Mol. Recognit.
Chem., 1994, 19, 389–398.
¨
28 H. Budig, S. Diele, P. Goring, R. Paschke, C. Sauer and
Notes and references
C. Tschierske, Perkin Trans., 1995, 767–775.
1 S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hagele, 29 H. Zimmermann, R. Poupko, Z. Luz and J. Billard, Z.
G. Scalia, R. Judele, E. Kapatsina, S. Sauer, A. Schreivogel
Naturforsch., A: Phys. Sci., 1985, 40, 149–160.
and M. Tosoni, Angew. Chem., Int. Ed., 2007, 46, 4832–4887. 30 J. Barbera, C. Cativiela, J. L. Serrano and M. M. Zurbano, Adv.
´
2 S. Sergeyev, W. Pisula and Y. H. Geerts, Chem. Soc. Rev., 2007,
36, 1902–1929.
Mater., 1991, 3, 602–605.
´
31 A. Omenat, J. Barbera, J. L. Serrano, S. Houbrechts and
3 T. Kato, T. Yasuda, Y. Kamikawa and M. Yoshio, Chem.
Commun., 2009, 729–739.
4 B. R. Kaafarani, Chem. Mater., 2011, 23, 378–396.
5 M. O'Neill and S. M. Kelly, Adv. Mater., 2011, 23, 566–584.
A. Persoons, Adv. Mater., 1999, 11, 1292–1295.
32 K. Kishikawa, S. Furusawa, T. Yamaki, S. Kohmoto,
M. Yamamoto and K. Yamaguchi, J. Am. Chem. Soc., 2002,
124, 1597–1605.
¨
6 L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons, 33 A. G. Serrette and T. M. Swager, Angew. Chem., Int. Ed., 1994,
R. H. Friend and J. D. MacKenzie, Science, 2001, 293, 1119–
1122.
7 V. Percec, M. Glodde, T. K. Beta, Y. Miura, I. Shiyanovskaya,
33, 2342–2345.
34 G. Ungar, V. Percec, M. N. Holerca, G. Johansson and
J. A. Heck, Chem.–Eur. J., 2000, 6, 1258–1266.
´
K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, 35 S. Moyano, J. Barbera, B. E. Diosdado, J. L. Serrano,
´
A. Rapp, H. W. Spiess, S. D. Hudson and H. Duan, Nature,
2002, 419, 384–387.
A. Elduque and R. Gimenez, J. Mater. Chem. C, 2013, 1,
3119–3128.
23560 | RSC Adv., 2014, 4, 23554–23561
This journal is © The Royal Society of Chemistry 2014