Please do not adjust margins
Organic & Biomolecular Chemistry
Page 7 of 7
DOI: 10.1039/C6OB00739B
Journal Name
ARTICLE
7
For selected reviews, see: (a) S. Kobayashi, Y. Mori, J. S.
Fossey and M. M. Salter, Chem. Rev., 2011, 111, 2626-2704;
(b) S. Kobayashi and H. Ishitani, Chem. Rev., 1999, 99, 1069-
1094; (c) J. M. M. Verkade, L. J. C. Van Hemert, P. J. L.
Brønsted base catalysis by utilizing the [1,2]-phospha-Brook
rearrangement. This reaction involves the generation of an
ester enolate via the umpolung process, i.e., the
chemoselective addition of diethyl phosphite to α-ketoesters
followed by the [1,2]-phospha-Brook rearrangement, and the
trapping of the resulting enolates by imines preferentially over
α-ketoesters and protons. This operationally simple reaction
can provide densely functionalized β-amino acid derivatives
including an oxygen functionality at the α-position in good
yields. The diastereoselectivities are highly dependent on the
substrates, as well as the reaction temperature, which is
attributed to the reversibility of the addition of the enolates to
imines. In addition, the methodology was extended to the
reaction of α-ketoesters, β-nitrostyrenes, and diethyl
phosphite. Further investigation of this methodology, including
the development of an enantioselective version, is in progress.
Quaedflieg and F. P. J. T. Rutjes, Chem. Soc. Rev., 2008, 37
,
29-41; (d) R. G. Arrayás and J. C. Carretero, Chem. Soc. Rev.,
2009, 38, 1940-1948.
(a) Y. Yamashita, H. Suzuki and S. Kobayashi, Org. Biomol.
Chem., 2012, 10, 5750-5752; (b) A. Kondoh, M. Oishi, T.
8
9
Takeda and M. Terada, Angew. Chem. Int. Ed., 2015, 54
15836-15839.
,
The reaction of ester equivalents under Brønsted base
catalysis was reported. See: (a) R. Matsubara, F. Berthiol and
S. Kobayashi, J. Am. Chem. Soc., 2008, 130, 1804-1805; (b) S.
Kobayashi and R. Matsubara, Chem. Eur. J., 2009, 15, 10694-
10700; (c) J. Nakano, K. Masuda, Y. Yamashita and S.
Kobayashi, Angew. Chem. Int. Ed., 2012, 51, 9525-9529.
10 During the preparation of this manuscript, the related
stoichiometric reaction was reported. The reaction involves
the generation of ester enolates by treating α-ketoesters
with diethyl phosphite in the presence of a stoichiometric
amount of NaHDMS or LHDMS and the subsequent
entrapment of the generated enolates by adding imines in a
one-pot fashion. See: J. Jiang, H. Liu, C.-D. Lu and Y.-J. Xu,
Org. Lett., 2016, 18, 880-883.
11 For selected synthetic study of α-hydroxy-β-amino acid
derivatives, see: (a) A. Clerici, N, Pastori and O. Porta, J. Org.
Chem., 2005, 70, 4174-4176; (b) A. Guerrini, G. Varchi and A.
Battaglia, J. Org. Chem., 2006, 71, 6785-6795; (c) W. Hu, X.
Xu, J. Zhou, W. J. Liu, H. Huang, J. Hu, L. Yang and L. Z. Gong,
J. Am. Chem. Soc., 2008, 130, 7782-7783; (d) Z. Sun, H. Liu,
Y.-M. Zeng, C.-D. Lu and Y.-J. Xu, Org. Lett., 2016, 18, 620-
623, and references cited therein.
Acknowledgements
This research was partially supported by a Grant-in-Aid for
Scientific Research on Innovative Areas “Advanced Molecular
Transformations by Organocatalysts” from MEXT (Japan) and a
Grant-in-Aid for Scientific Research from the JSPS.
Notes and references
1
For early studies, see: (a) S. J. Fitch and K. Moedritzer, J. Am.
Chem. Soc., 1962, 84, 1876-1879; (b) L. A. R. Hall, C. W.
12 CCDC No. 1046578. See ref. 6c.
13 CCDC No. 1450154. See the supporting information for
details.
Stephenes and J. J. Drysdals, J. Am. Chem. Soc., 1957, 79
,
1768-1769; (c) W. F. Barthel, B. H. Alexander, P. A. Giang and
S. A. Hall, J. Am. Chem. Soc., 1955, 77, 2424-2427; (d) A. M.
Mattson, J. T. Spillane and G. W. Pearce, J. Agric. Food Chem.,
1955, 3, 319-321; (e) W. Lorenz, A. Henglbin and G. Schrader,
J. Am. Chem. Soc., 1955, 77, 2554-2556.
2
For selected examples, see: (a) M. Hayashi and S. Nakamura,
Angew. Chem. Int. Ed., 2011, 50, 2249-2252; (b) D. Coffinier,
L. El Kaim and L. Grimaud, Synlett, 2008, 1133-1136; (c) A. S.
Demir, Ӧ. Reis, I. Esiringü, B. Reis and S. Baris, Tetrahedron,
2007, 63, 160-165; (d) A. S. Demir and S. Eymur, J. Org.
Chem., 2007, 72, 8527-8530; (e) L. El Kaïm, L. Gaultier, L.
Grimaud and A. Dos Santos, Synlett, 2005, 2335-2336; (f) K.
Pachamuthu and R. R. Schmidt, Chem. Commun., 2004,
1078-1079; (g) R. Ruel, J.-P. Bouvier and R. N. Young, J. Org.
Chem., 1995, 60, 5209-5213; (h) M. Kuroboshi, T. Ishihara
and T. Ando, J. Fluorine Chem., 1988, 39, 293-298.
3
(a) C. C. Bausch and J. S. Johnson, Adv. Synth. Catal., 2005,
347, 1207-1211; (b) A. S. Demir, Ӧ. Reis, A. Ç. İğdir, İ. Esiringü
and S. Eymur, J. Org. Chem., 2005, 70, 10584-10587; (c) A. S.
Demir, I. Esiringü, M. Gӧllü and Ӧ. Reis, J. Org. Chem., 2009,
74, 2197-2199; (d) A. S. Demir, B. Reis, Ӧ. Reis, S. Eymür, M.
Gӧllü, S. Tural and G. Saglam, J. Org. Chem., 2007, 72, 7439-
7442.
4
5
M. Corbett, D. Uraguchi, T. Ooi and J. S. Johnson, Angew.
Chem. Int. Ed., 2012, 51, 4685-4689.
(a) M. A. Horwitz, N. Tanaka, T. Yokosaka, D. Uraguchi, J. S.
Johnson and T. Ooi, Chem. Sci., 2015, 6, 6086-6090; (b) M. A.
Horwitz, B. P. Zavesky, J. I. Martinez-Alvarado and J. S.
Johnson, Org. Lett., 2016, 18, 36-39.
6
(a) A. Kondoh and M. Terada, Org. Lett., 2013, 15, 4568-
4571; (b) A. Kondoh, T. Aoki and M. Terada, Org. Lett., 2014,
16, 3528-3531; (c) A. Kondoh and M. Terada, Org. Chem.
Front., 2015, 2, 801-805; (d) A. Kondoh, T. Aoki and M.
Terada, Chem. Eur. J., 2015, 21, 12577-12580.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins