11. Y. Yamamoto, T. Miyairi, T. Ohmura and N. Miyaura, J. Org.
Chem., 1999, 64, 296.
12. (a) S. Pereira and M. Srebnik, Organometallics, 1995, 14, 3127;
(b) Y. D. Wang, G. Kimball, A. S. Prashad and Y. Wang,
Tetrahedron Lett., 2005, 46, 8777.
13. (a) T. M. Trnka and R. H. Grubbs, Acc. Chem. Res., 2001, 34, 18;
(b) A. Furstner, Angew. Chem., Int. Ed., 2000, 39, 3013.
¨
14. S. Brase and A. de Meijere, in Metal-Catalyzed Cross-
Scheme 4 Reagents and conditions: (a) Pd(PPh3)4 (5 mol%), CuI
(10 mol%), CsF, DMF, 40 1C, 53%; (b) Me3SnSnMe3, Pd(PPh3)4
(5 mol%), toluene, reflux, 31%.
¨
Coupling Reactions, ed. A de Meijere and F Diederich, Wiley-
VCH, Weinheim, 2nd edn, 2004, vol. 1, p. 217.
15. Other protocols afforded appreciable amounts of the correspond-
ing saturated ketone rather than the desired enone. Under the
optimized conditions, however, the enone : ketone ratio was
Fluoride induced cleavage of the silyl group in product 24
thus formed gave the terminal alkyne 25. As this compound
was identical in all respects to the key intermediate used by
Baran and co-workers in their approach to 1,3,4 a total
synthesis of this intricate alkaloid in optically active form
has been accomplished.27 Despite a somewhat higher step
count, our catalysis based route is similarly productive and
compares favorably in terms of its inherent flexibility.28
Generous financial support by the MPG and the Fonds der
Chemischen Industrie is gratefully acknowledged. We thank
invariably greater than 10
: 1. For a discussion see:
G. K. Friestad and B. P. Branchaud, Tetrahedron Lett., 1995,
36, 7047.
16. B. H. Lipshutz, in Organometallics in Synthesis. A Manual, ed.
M Schlosser, Wiley, Chichester, 2nd edn, 2002, p. 669.
17. D. R. Dragoli, M. T. Burdett and J. A. Ellman, J. Am. Chem. Soc.,
2001, 123, 10127.
18. M. E. Garst, J. N. Bonfiglio, D. A. Grudoski and J. Marks, J. Org.
Chem., 1980, 45, 2307.
19. If the mixture is quenched with 2-pyridyl–NTf2 at ꢀ78 1C, a
B1 : 1 mixture of the two possible enol triflates is formed. This
result suggests that the selective formation of compound 23 under
the chosen conditions is mostly thermodynamic in origin.
20. (a) J. K. Stille, Angew. Chem., Int. Ed. Engl., 1986, 25, 508;
(b) P. Espinet and A. M. Echavarren, Angew. Chem., Int. Ed.,
2004, 43, 4704.
Prof. E. Zubıa, Universidad de Cadiz, for providing an
´ ´
authentic sample for comparison, Dr C. Aıssa for his coopera-
¨
tion in the early stages of the project, Dr C. W. Lehmann for
the crystal structure analysis, Dr R. Mynott and Ms C. Wirtz
for expert NMR support, and Mr A. Deege and his team for
invaluable help with the HPLC analyses.
21. S. P. H. Mee, V. Lee and J. E. Baldwin, Angew. Chem., Int. Ed.,
2004, 43, 1132.
22. W. J. Scott and J. K. Stille, J. Am. Chem. Soc., 1986, 108, 3033.
The rather poor yield in this step is ascribed to the low stability of
the pyrone entities of 27 and 28 in refluxing toluene.
23. (a) G. D. Allred and L. S. Liebeskind, J. Am. Chem. Soc., 1996,
118, 2748; (b) X. Han, B. M. Stoltz and E. J. Corey, J. Am. Chem.
Soc., 1999, 121, 7600; (c) A. L. Casado and P. Espinet, Organo-
metallics, 2003, 22, 1305.
Notes and references
1. L. Garrido, E. Zubıa, M. J. Ortega and J. Salva, J. Org. Chem.,
´ ´
2003, 68, 293.
2. (a) N. D. Smith, J. Hayashida and V. H. Rawal, Org. Lett., 2005,
7, 4309; (b) M. A. Grundl and D. Trauner, Org. Lett., 2006, 8, 23;
(c) P. Wipf and M. Furegati, Org. Lett., 2006, 8, 1901;
(d) J. H. Jeong and S. M. Weinreb, Org. Lett., 2006, 8, 2309.
3. P. S. Baran and N. Z. Burns, J. Am. Chem. Soc., 2006, 128, 3908.
4. For a modified approach and the synthesis of the non-natural
enantiomer (+)-1, see: N. Z. Burns and P. S. Baran, Angew.
Chem., Int. Ed., 2008, 47, 205. This paper also corrects the
biosynthesis proposed in ref. 5.
24. T. B. Durham, N. Blanchard, B. M. Savall, N. A. Powell and
W. R. Roush, J. Am. Chem. Soc., 2004, 126, 9307.
25. (a) A. Furstner, C. Nevado, M. Waser, M. Tremblay, C. Chevrier,
¨
F. Teply
2007, 129, 9150; (b) A. Furstner, C. Nevado, M. Tremblay,
´ , C. Aıssa, E. Moulin and O. Muller, J. Am. Chem. Soc.,
¨
¨
¨
´ , C. Aıssa and M. Waser, Angew. Chem.,
¨
C. Chevrier, F. Teply
Int. Ed., 2006, 45, 5837; (c) A. Furstner, L. C. Bouchez, J.-A. Funel,
V. Liepins, F.-H. Pore
M. Tamiya, Angew. Chem., Int. Ed., 2007, 46, 9265.
¨
´
e, R. Gilmour, F. Beaufils, D. Laurich and
5. E. Gravel, E. Poupon and R. Hocquemiller, Chem. Commun.,
2007, 719.
26. A. Furstner, J.-A. Funel, M. Tremblay, L. C. Bouchez,
¨
6. L. F. Tietze, S. G. Stewart, M. E. Polomska, A. Modi and
A. Zeeck, Chem.–Eur. J., 2004, 10, 5233.
7. (a) U. Schmidt, A. Lieberknecht and J. Wild, Synthesis, 1984, 53;
(b) E. Teoh, E. M. Campi, W. R. Jackson and A. J. Robinson,
New J. Chem., 2003, 27, 387.
8. (a) M. J. Burk, J. E. Feaster, W. A. Nugent and R. L. Harlow,
J. Am. Chem. Soc., 1993, 115, 10125; (b) for a related application
see: A. Endo, A. Yanagisawa, M. Abe, S. Tohma, T. Kan and
T. Fukuyama, J. Am. Chem. Soc., 2002, 124, 6552.
9. The use of in situ generated ylide invariably led to lower yields and
various degree of epimerization; the procedure described in the
C. Nevado, J. Ackerstaff and C. C. Stimson, Chem. Commun.,
2008, DOI: 10.1039/b805299a (accompanying paper).
27. Attempts to reproduce the end game did afford the desired
product but the yields were much lower than those reported in
the literature, despite considerable experimentation. However, the
small amounts of product allowed us to confirm the absolute
configuration assigned to (ꢀ)-1 by comparison with an authentic
sample.
28. The two known asymmetric syntheses of the key intermediate 25
compare as follows:
following publication was used to prepare the ylide: R. Koster,
D. Simic
739, 211.
¨
´
and M. A. Grassberger, Justus Liebigs Ann. Chem., 1970,
10. (a) N. A. Petasis and I. Akritopoulou, Tetrahedron Lett., 1993, 34,
583; (b) for a related application see: K. M. Brummond and J. Lu,
Org. Lett., 2001, 3, 1347.
.
ꢁc
This journal is The Royal Society of Chemistry 2008
2872 | Chem. Commun., 2008, 2870–2872