Page 5 of 6
Journal of the American Chemical Society
J.; Qi, J.; Cui, S., Fe-Catalyzed olefin hydroamination with diazo
compounds for hydrazone synthesis. Org. Lett. 2016, 18, 128. For a
comprehensive review, see reference 6a.
A.; Ito, J.; Nishiyama, H., Iron- and cobalt-catalyzed asymmetric
hydrosilylation of ketones and enones with bis(oxazolinylphenyl)amine
ligands. Chemistry 2010, 16, 3090.
1
2
3
4
5
6
7
8
9
9. Organocobalt(III) complexes are known to be oxidized to Co(IV)
species that is susceptible to nucleophilic attack: (a) Vol'pin, M. E.;
Levitin, I. Y.; Sigan, A. L.; Halpern, J.; Tom, G. M., Reactivity of
organocobalt(IV) chelate complexes toward nucleophiles: diversity of
mechanisms. Inorg. Chim. Acta 1980, 41, 271; (b) Vol'pin, M. E.;
Levitin, I. Y.; Sigan, A. L.; Nikitaev, A. T., Current state of
organocobalt(IV) and organorhodium(IV) chemistry. J. Organomet.
Chem. 1985, 279, 263; (c) Halpern, J., Oxidation of Organometallic
Compounds. Angew. Chem. Int. Ed. 1985, 24, 274. For a C–C bond
forming reaction that possibly proceed through Co(IV), see references
8b and 28a.
20. (a) Liao, C.-M.; Hsu, C.-C.; Wang, F.-S.; Wayland, B. B.; Peng,
C.-H., Living radical polymerization of vinyl acetate and methyl
acrylate mediated by Co(Salen*) complexes. Polym. Chem. 2013, 4,
3098; (b) Clarke, R. M.; Herasymchuk, K.; Storr, T., Electronic
structure elucidation in oxidized metal–salen complexes. Coord. Chem.
Rev. 2017, 352, 67. For a discussion, see supporting information (S22).
21. For data from individual experiments, see supporting information.
22. Organocobalt has been proposed to be an off-cycle species in
catalytic isomerization. See reference 8a.
23. The absence of substantial enantiomeric excess prevented detection
or exclusion of a potential non-linear effect at this point.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
10. Shigehisa, H., Studies on catalytic activation of olefins using cobalt
complex. Chem. Pharm. Bull. 2018, 66, 339.
11. (a) Shigehisa, H.; Koseki, N.; Shimizu, N.; Fujisawa, M.; Niitsu, M.;
Hiroya, K., Catalytic hydroamination of unactivated olefins using a Co
catalyst for complex molecule synthesis. J. Am. Chem. Soc. 2014, 136,
24. For important precedents of binuclear Pd intermediates in oxidative
catalysis, see: (a) Powers, D. C.; Ritter, T., Bimetallic redox synergy in
oxidative palladium catalysis. Acc. Chem. Res. 2012, 45, 840; (b)
Powers, D. C.; Ritter, T., Bimetallic Pd(III) complexes in
palladium-catalysed carbon–heteroatom bond formation. Nat. Chem.
2009, 1, 302.; For a recent review: (c) Pye, D. R.; Mankad, N. P.,
Bimetallic catalysis for C-C and C-X coupling reactions. Chem. Sci.
2017, 8, 1705.
25. (a) Hansen, K. B.; Leighton, J. L.; Jacobsen, E. N., On the
mechanism of asymmetric nucleophilic ring-opening of epoxides
catalyzed by (salen)CrIIIComplexes. J. Am. Chem. Soc. 1996, 118,
10924; (b) Ford, D. D.; Nielsen, L. P.; Zuend, S. J.; Musgrave, C. B.;
Jacobsen, E. N., Mechanistic basis for high stereoselectivity and broad
substrate scope in the (salen)Co(III)-catalyzed hydrolytic kinetic
resolution. J. Am. Chem. Soc. 2013, 135, 15595; (c) Mulzer, M.;
Whiting, B. T.; Coates, G. W., Regioselective carbonylation of
13534;
(b)
Shigehisa,
H.,
Functional
group
tolerant
markovnikov-selective hydrofunctionalization of unactivated olefins
using a cobalt complex as catalyst. Synlett 2015, 26, 2479; (c) Shigehisa,
H.; Hayashi, M.; Ohkawa, H.; Suzuki, T.; Okayasu, H.; Mukai, M.;
Yamazaki, A.; Kawai, R.; Kikuchi, H.; Satoh, Y.; Fukuyama, A.; Hiroya,
K., Catalytic synthesis of saturated oxygen heterocycles by
hydrofunctionalization of unactivated olefins: unprotected and protected
strategies. J. Am. Chem. Soc. 2016, 138, 10597; (d) Shigehisa, H.; Ano,
T.; Honma, H.; Ebisawa, K.; Hiroya, K., Co-Catalyzed hydroarylation
of unactivated olefins. Org. Lett. 2016, 18, 3622; (e) Shepard, S. M.;
Diaconescu, P. L., Redox-Switchable hydroelementation of a cobalt
complex supported by a ferrocene-based ligand. Organometallics 2016,
35, 2446; (f) A recent report on possible involvement of alkylCo(IV) as
an eletrophilic intermediate: Touney, E. E.; Foy, N. J.; Pronin, S. V.,
Catalytic radical-polar crossover reactions of allylic alcohols. J. Am.
Chem. Soc. 2018, 140, 16982.
trans-disubstituted epoxides to -lactones:
a viable entry into
syn-aldol-type products. J. Am. Chem. Soc. 2013, 135, 10930.
26. The stereogenic carbon atom bound to Co in 14 complicates a
strictly accurate description. In spite of this, considering the fast
equilibrium between 14 and 15, such kinetic effect, if not predominantly,
could be at least partially derived from the stereochemical heterogeneity
in the salen ligand. It should be also noted that the current data does not
exclude the effect of potential persistent off-cycle multinuclear species.
12.(a) Shigehisa, H.; Aoki, T.; Yamaguchi, S.; Shimizu, N.; Hiroya, K.,
Hydroalkoxylation of unactivated olefins with carbon radicals and
carbocation species as key intermediates. J. Am. Chem. Soc. 2013, 135,
10306;
(b)
Shigehisa,
H.;
Kikuchi,
H.;
Hiroya,
K.,
27.
A few alternative monometallic pathways were considered,
Markovnikov-Selective addition of fluorous solvents to unactivated
olefins using a Co catalyst. Chem. Pharm. Bull. 2016, 64, 371.
13. (a) Li, Z.; Zhang, J.; Brouwer, C.; Yang, C. G.; Reich, N. W.; He, C.,
Brønsted acid catalyzed addition of phenols, carboxylic acids, and
tosylamides to simple olefins. Org. Lett. 2006, 8, 4175; (b) Yang, C. G.;
He, C., Gold(I)-catalyzed intermolecular addition of phenols and
carboxylic acids to olefins. J. Am. Chem. Soc. 2005, 127, 6966; (c) Oe,
Y.; Ohta, T.; Ito, Y., Ruthenium catalyzed addition reaction of
carboxylic acid across olefins without -hydride elimination. Chem.
Commun. 2004, 1620; (d) Rosenfeld, D. C.; Shekhar, S.; Takemiya, A.;
Utsunomiya, M.; Hartwig, J. F., Hydroamination and hydroalkoxylation
catalyzed by triflic acid. Parallels to reactions initiated with metal
triflates. Org. Lett. 2006, 8, 4179.
14. Yoshimura, A.; Zhdankin, V. V., Advances in Synthetic
Applications of Hypervalent Iodine Compounds. Chem. Rev. 2016, 116,
3328. Other I(III) species containing Nu as ligands might also be
produced in addition to 2, which would lead to similar reactions
affording Co–H and Co–Nu complexes. It is worth mentioning that
using I(III) reagents can avoid the undesired fluorination side reaction
observed with N-fluoropyridinium salt. See reference 8i.
15. For Co(III) carboxylate-mediated oxidative trapping: Lande, S. S.;
Kochi, J. K., Formation and oxidation of alkyl radicals by cobalt(III)
complexes. J. Am. Chem. Soc. 1968, 90, 5196.
16. For instance, direct oxidation of the silane, decarboxylation (when
Nu is a carboxylate), and epoxidation. (a) Xu, K.; Wang, Z.; Zhang, J.;
Yu, L.; Tan, J., Cobalt-Catalyzed decarboxylative acetoxylation of
amino acids and arylacetic acids. Org. Lett. 2015, 17, 4476; (b) Koola, J.
D.; Kochi, J. K., Cobalt-catalyzed epoxidation of olefins. Dual pathways
for oxygen-atom transfer. J. Org. Chem. 1987, 52, 4545.
including: 1) oxidation of 15 by 12 or 2; 2) oxidation of 14 by 2.
However, they are ruled out due to inconsistent kinetics and failure to
account for the enantiopurity effect.
28. Wayner, D. D. M.; McPhee, D. J.; Griller, D., Oxidation and
reduction potentials of transient free radicals. J. Am. Chem. Soc. 1988,
110, 132. Our observations underline the mechanistic difference
between intra- and intermolecular reactions. While mono-cobalt
mediated radical oxidation is proposed in the former (reference 10), the
latter seems to necessitate a bimetallic pathway.
29. (a) For an excellent discussion on bimetallic-mediated C–C bond
formation process, see: Shevick, S. L.; Obradors, C.; Shenvi, R. A.,
Mechanistic interrogation of Co/Ni-dual catalyzed hydroarylation. J. Am.
Chem. Soc. 2018, 140, 12056. (b) For a dimeric iron species in
FeH-catalyzed olefin coupling reactions, see: Lo, J. C.; Kim, D.; Pan, C.
M.; Edwards, J. T.; Yabe, Y.; Gui, J.; Qin, T.; Gutierrez, S.; Giacoboni,
J.; Smith, M. W.; Holland, P. L.; Baran, P. S., Fe-Catalyzed C-C bond
construction from olefins via radicals. J. Am. Chem. Soc. 2017, 139,
2484.
30. Although the oxidation potential of a secondary alkyl Co(III) salen
complex is estimated to be slightly higher than the reduction potential of
a Co(III)–X complex by ca. 0.1 V, this gap is small and subjected to
change as the coordination environment varies, thereby possibly
allowing SET during catalytic reactions. See supporting information
(S25) for further discussion. (a) Chiang, L.; Allan, L. E.; Alcantara, J.;
Wang, M. C.; Storr, T.; Shaver, M. P., Tuning ligand electronics and
peripheral substitution on cobalt salen complexes: structure and
polymerisation activity. Dalton Trans 2014, 43, 4295; (b) Kurahashi, T.;
Fujii, H., Unique ligand-radical character of an activated cobalt salen
catalyst that is generated by aerobic oxidation of a cobalt(II) salen
complex. Inorg. Chem. 2013, 52, 3908; (c) Levitin, I.; Sigan, A. L.;
Vol'pin, M. E., Electrochemical generation and reactivity of
organo-cobalt(IV) and -rhodium(IV) chelates. J. Chem. Soc., Chem.
Commun. 1975, 469.
17. For comparison, -7% ee was obtained using ent-7 (entry 7). See
Table S1 for details.
18. See supporting information (S14) for details.
19. (a) Tsubo, T.; Chen, H.-H.; Yokomori, M.; Fukui, K.; Kikuchi, S.;
Yamada, T., Enantioselective borohydride reduction of aliphatic ketones
catalyzed by ketoiminatocobalt(III) complex with 1-chlorovinyl axial
ligand. Chem. Lett. 2012, 41, 780; (b) Inagaki, T.; Phong le, T.; Furuta,
ACS Paragon Plus Environment