2072
Russ.Chem.Bull., Int.Ed., Vol. 56, No. 10, October, 2007
Mamedov et al.
H (mꢀPh), J = 7.86 Hz, J = 7.56 Hz); 7.30 (ddd, 2 H, H(7), J =
8.49 Hz, J = 7.02 Hz, J = 1.44 Hz); 7.40 (dd, 4 H, H (oꢀPh), J =
7.56 Hz, J = 1.02 Hz); 7.63—7.73 (m, 4 H, H(5´), H(8´)).
EI MS, m/z (%): 675.4 (4.0), 674.3 (14.0), 673.3 (55.4), 672.3
(100), 671.3 (2.7), 540.3 (1.5), 539.3 (3.35), 538.3 (1.30), 527.3
(1.32), 449.2 (0.4), 337.2 (4.6), 336.7 (7.8), 336.2 (16.8), 335.2
(3.3). Found (%): C, 79.01; H, 4.87; N, 11.63. C48H36N6O2.
Calculated (%): C, 79.10; H, 4.98; N, 11.53.
with water. Compound 4 was isolated and purified on silica gel
as described above. The preparative yield was 40 mg (40%). All
spectroscopic characteristics of compound 4 synthesized elecꢀ
trochemically were completely identical to those of compound 4
prepared by the chemical method.
This study was financially supported by the Russian
Foundation for Basic Research (Project Nos 03ꢀ03ꢀ32865,
04ꢀ03ꢀ32828, 05ꢀ03ꢀ32558, and 05ꢀ03ꢀ33008).
12,42ꢀDioxoꢀ21,31ꢀdiphenylꢀ7,10,13ꢀtrioxaꢀ1,4(3,1)ꢀdiquinꢀ
oxalinaꢀ2(2,3),3(3,2)ꢀdiindolizinacyclopentadecaphane (4). A soꢀ
lution of I2 (300 mg, 1.18 mmol) in chloroform (100 mL) was
added to a solution of compound 2b (360 mg, 0.42 mmol) in
chloroform (200 mL). The reaction mixture was stirred for 3 h,
kept for 2 days, and washed with a sodium carbonate solution, a
sodium thiosulfate solution, and water. Chloroform was removed
under reduced pressure, and the brown resinous residue was
chromatographed on a silica gel column (Silica gel L 100/160µ,
CHCl3 : EtOH, 99 : 1, as the eluent). The yield was 250 mg
(69%), m.p. >330 °C. IR, ν/cm–1: 704, 729, 762, 1103, 1128,
1159, 1251, 1281, 1346, 1366, 1454, 1486, 1524, 1583, 1601,
1649, 2857, 2922. 1H NMR, δ: 3.37—3.45 (m, 8 H, C(4)H2,
1 H C(2)H2, 1 H C(3)H2); 3.48—3.52 (m, 2 H, C(3)H2);
3.52—3.57 (m, 2 H, C(2)H2); 3.99—4.05, 3.80—3.86 (m, 4 H,
C(1)H2); 6.83 (dd, 2 H, H(6´), J = 6.89 Hz, J = 6.67 Hz); 7.02
(dd, 2 H, H(7´), J = 9.42 Hz, J = 6.58 Hz); 7.14 (dd, 2 H,
H (рꢀPh), J = 7.38 Hz, J = 7.00 Hz); 7.20 (ddd, 2 H, H(6), J =
8.00 Hz, J = 5.73 Hz, J = 2.27 Hz); 7.25 (dd, 4 H, (mꢀPh), J =
7.80 Hz, J = 7.58 Hz); 7.30 (d, 2 H, H(5), J = 7.90 Hz); 7.37 (d,
4 H, H (oꢀPh), J = 7.56 Hz); 7.48—7.52 (m, 4 H, H(7), H(8));
7.72 (d, 4 H, H(8´), H(5´), J = 8.67 Hz). 13C NMR, δ: 154.24
(C(2)); 147.98 (C(3)); 133.52 (C(4a)); 129.99 (C(5)); 123.30
(C(6)); 130.52 (C(7)); 114.69 (C(8)); 134.06 (C(8a)); 115.44
(C(1´)); 121.32 (C(2´)); 115.26 (C(3´)); 125.13 (C(5´)); 112.43
(C(6´)); 120.15 (C(7´)); 118.46 (C(8´)); 131.42 (C(8a´)); 136.01
(C(1″)); 129.89 (C(2″)); 128.70 (C(3″)); 126.10 (C(4″)); 42.28
(CH2(1)); 67.62 (CH2(2)); 70.70 (CH2(3)); 70.53 (CH2(4)).
MS of the crude product (MALDI TOF): [MH]+ 831, [MH]+
1662. EI MS, m/z (Irel (%)): 833.2 (4.9), 832.3 (19.7), 831.2
(61.1), 830.2 (100), 415.8 (4.6), 415.3 (13.3), 349.7 (3.4), 349.2
(3.1), 97.3 (5.3), 85.3 (4.1), 83.3 (5.7), 81.3 (6.0). Found (%):
C, 75.25; H, 5.07; N, 10.03. C52H42N6O5. Calculated (%):
C, 75.16; H, 5.09; N, 10.11.
The electrosynthesis of cyclopentadecaphane 4 was perꢀ
formed by the preparative electrochemical oxidation of comꢀ
pound 2b using a PIꢀ50ꢀ1 potentiostat in a diaphragm (celluꢀ
lose) glass electrolytic cell on a platinum cylindrical electrode
(S = 50.8 cm2) in a galvanostatic mode at a controlled potential
of the first oxidation peak (Е < +0.5 V relative to Ag/0.01 mol L–1
AgNO3 in MeCN) in a MeCN/0.1 mol L–1 Et4NClO4 system at
room temperature (22 °C). A platinum wire was used as the
cathode. The working solution (50 mL) was prepared by dissolvꢀ
ing compound 2b (100 mg, 0.12 mmol) in a MeCN/0.1 mol L–1
Et4NClO4 system. The solution was magnetically stirred. The
electrolysis was carried out for 3.88 h (I = 2 mA, τ = 3.22 h; I =
1.5 mA, τ = 0.12 h, I = 1.2 mA, τ = 0.12 h, I = 1.0 mA, τ =
0.42 h). The mass spectrometric study of the reaction mixture
after the electrolysis showed the absence of the starting comꢀ
pound 2b in the solution and the presence of two macrocyclic
products, viz., compound 4 (m/z = 830) and a dimeric macroꢀ
cyclic compound (m/z = 1660). The solvent was evaporated, the
supporting electrolyte was removed, and the residue was washed
References
1. J.ꢀM. Lehn, Supramolecular Chemistry, Concepts and Perꢀ
spectives, VCH, Weinheim, 1995, 271 pp.
2. P. D. Beer, Chem. Soc. Rev., 1989, 18, 409; P. D. Beer, Adv.
Inorg. Chem., 1992, 79.
3. R. A. Bissel, E. Cordova, A. E. Kaifer, and J. F. Stoddart,
Nature, 1994, 369, 133.
4. T. Saji and I. Kinoshita, J. Chem. Soc., Chem. Commun.,
1986, 716.
5. A. M. Allgeier, C. S. Slone, C. A. Mirkin, L. M. Liableꢀ
Sands, G. P. A. Yap, and A. L. Rheingold, J. Am. Chem.
Soc., 1997, 119, 550.
6. Z.ꢀT. Li, P. C. Stein, J. Becher, D. Jensen, P. Mork, and
N. Svenstrup, Chem. Eur. J., 1996, 624.
7. W. Devonport, M. A. Blower, M. R. Bryce, and L. M.
Goldenberg, J. Org. Chem., 1997, 62, 885.
8. E. Cordova, R. A. Bissel, and A. E. Kaifer, J. Org. Chem.,
1995, 60, 1033.
9. M. Asakawa, P. R. Ashton, S. E. Boyd, C. L. Brown, R. E.
Gillard, O. Kocian, F. M. Raymo, J. F. Stoddart, M. S.
Tolley, A. J. P. White, and D. J. Williams, J. Org. Chem.,
1997, 62, 26.
10. S. Hünig, Liebigs Ann. Chem., 1964, 676, 32.
11. S. Hünig and F. Linhart, Liebigs Ann. Chem., 1976, 317.
12. L. Cardellini, P. Carloni, L. Greci, G. Tosi, R. Andruzzi,
G. Marrosu, and A. Trazza, J. Chem. Soc., Perkin Trans. 2,
1990, 2117.
13. M. B. Leitner, T. Kreher, H. Sonnenschein, B. Costisella,
and J. Springer, J. Chem. Soc., Perkin Trans. 2, 1997, 377.
14. V. V. Yanilkin, V. A. Mamedov, A. V. Toropchina, A. A.
Kalinin, N. V. Nastapova, V. I. Morozov, R. P. Shekurov,
and O. G. Isaikina, Elektrokhimiya, 2006, 42, 251 [Russ.
J. Electrochem., 2006, 42 (Engl. Transl.)].
15. H. Sonnenschein, T. Kreher, E. Gründemann, R.ꢀP. Krüger,
A. Kunath, and V. Zabel, J. Org. Chem., 1996, 61, 710.
16. T. Kreher, H. Sonnenschein, B. Costisella, and
M. Schneider, J. Chem. Soc., Perkin Trans. 1, 1997, 3451.
17. F. Vogtle and H. Sieger, Angew. Chem., Int. Ed., 1977,
16, 396.
18. H. Sieger and F. Vogtle, Lieb. Ann. Chem., 1980, 425.
19. A. F. Pozharskii, Teoreticheskie osnovy khimii geterotsiklov
[Theoretical Principles of the Chemistry of Heterocycles],
Khimiya, Moscow, 1985, 280 pp. (in Russian).
20. V. A. Mamedov, A. A. Kalinin, V. V. Yanilkin, A. T.
Gubaidullin, Sh. K. Latypov, A. A. Balandina, O. G.
Isaikina, A. V. Toropchina, N. V. Nastapova, N. A. Iglamova,
and I. A. Litvinov, Izv. Akad. Nauk, Ser. Khim., 2005, 2534
[Russ. Chem. Bull., Int. Ed., 2005, 54, 2616].
21. A. H. Elwahy, Tetrahedron, 2000, 56, 897.