TABLE 1. Initial Catalyst Screening
entry lactone cat.
x
solvent conca (M) convb (%) eec (%)
FIGURE 2. Bifunctional alkaloid-derived catalysts.
1
2
3
4
6a
6a
6b
6c
6a
6a
6a
6a
6a
6a
6a
6a
6a
6a
6a
6a
6a
6a
6a
6a
6a
none
3a
3a
3a
3a
3a
3a
3a
3a
3a
3a
3a
3a
3a
3a
3a
3b
4a
4a
4b
5
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
0.4
0.4
0.4
0.4
1.0
0.2
0.2
0.2
0.4
0.2
0.1
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0
n.d.
82
81
78
62
83
84
83
82
84
85
83
n.d.
n.d.
77
87
67
85
84
77
n.d.
5
92
79
92
>98
75
62
83
95
89
78
26
2
31
71
52
100
99
94
100
47
5
5
5
5
5
5
product yield, whereas electrophiles with a lower steric require-
ment underwent smooth ring-opening with reduced10 (yet still
on a par with previous benchmarks4–6) enantiopurity.
5
6
7d
8e
9
While remarkable progress toward the development of a
general catalytic asymmetric system for these potentially useful
transformations has been made, some challenges remainsin
particular, the need to address the sensitivity of the methodology
to substrate steric bulk and the expansion of the reaction scope
to include nonalcoholic nucleophiles. We therefore became
interested in the evaluation of the cinchona alkaloid-derived
urea- and thiourea-based catalysts (Figure 2) in this reaction.
These bifunctional materials promote a variety of asymmetric
addition reactions of acidic pronucleophiles to hydrogen-bond
accepting electrophiles,11,12 and in particular, we were encour-
aged by recently finding that they are capable of mediating
highly efficient and enantioselective additions of alcohols to
meso-anhydrides.13
Our investigation began with the DKR of valine-derived
azalactones 6a-c with allyl alcohol in the presence of the urea-
based catalyst 3a at ambient temperature (Table 1).14 These
initial experiments revealed that 3a is an active catalyst capable
of promoting both racemization and enantioselective (>80%
ee) ring opening of these substrates (no reaction was observed
in the absence of the catalyst) at loadings of 5 mol %. As
expected, the more activated azalactone 6c underwent faster and
10 CH2Cl2
10 CH2Cl2
10 CH2Cl2
10
11
12
13
14
15
16f
17g
18h
19i
20g
21j
5
5
5
5
MTBE
THF
Et2O
PhMe
10 CH2Cl2
5
5
CH2Cl2
CH2Cl2
10 CH2Cl2
5
5
CH2Cl2
CH2Cl2
a Refers to the concentration of the azalactone. b Conversion: deter-
mined by 1H NMR spectroscopy. c Enantioselectivity (% ee, determined
by CSP-HPLC; see the Supporting Information). d 1.0 equiv of 8. e 2.0
equiv of 8. f 2.0 equiv of 7, at -20 °C, conversion after 72 h. g 2.0
equiv of 8, conversion after 65 h. h 2.0 equiv of 8, conversion after
34 h. i 2.0 equiv of 8, at -20 °C, conversion after 72 h. j 2.0 equiv of 8,
conversion after 24 h.
slightly less selective DKR than either 6a or 6b (entries 1-4).
The influence of concentration and nucleophile loading was next
examinedseither 1.5 or 2.0 equiv of allyl alcohol at 0.2 M
reaction concentration provided a convenient balance between
rate and enantioselectivity (entries 5-11). Dichloromethane was
determined to be superior to either ethereal solvents or toluene
(entries 6 and 12-15), while carrying out the reaction at -20
°C resulted in a small improvement in enantioselectivity (87%
ee), albeit with reduced conversion even after extended reaction
time (entry 16). Interestingly, urea derivative 3a is a better
catalyst under these conditions than its thiourea analogue 3b,15
while the corresponding dihydroquinine-derived (thio)urea
derivatives 4a,b possesses similar selectivity but better activity
profiles than their quinine-derived counterparts 3a,b (entries
17-20). Thus, 4a (at 5 mol % levels) emerged from these initial
optimization studies as a readily prepared, active catalyst capable
of the highly enantioselective (85% ee), almost quantitative
conversion of the hindered substrate 6a to 7a at ambient
temperature.
Having established 4a as the optimum catalyst, we next turned
to the determination of the substrate scope (Table 2). We were
pleased to find 4a to be relatively insensitive to the steric bulk
of the azalactone alkyl substituent: both unhindered azalactones
(entries 1-4) and more bulky analogues (entries 5-7) under-
went enantioselective DKR to furnish orthogonally protected
amino acids with very good enantioselectivity. To the best of
our knowledge, this represents the most selective DKR of
azalactones 8-10 by alcoholysis with a synthetic catalyst to
date.
(10) For example, the levels of enantiomeric excess obtained with alanine
and phenylalanine-derived substrates using catalyst 2 and allyl alcohol was 80
and 78% ee, respectively7b).
(11) For a review of the applications of this class of catalyst, see: Connon,
S. J. Chem. Commun. 2008, 2499.
(12) (a) Li, B.-J.; Jang, L.; Liu, M.; Chen, Y.-C.; Ding, L.-S.; Wu, Y. Synlett
2005, 603. (b) Vakulya, B.; Varga, S.; Csa´mpai, A.; Soo´s, T. Org. Lett. 2005,
7, 1967. (c) McCooey, S. H.; Connon, S. J. Angew. Chem., Int. Ed. 2005, 44,
6367. (d) Ye, J.; Dixon, D. J.; Hynes, P. S. Chem. Commun. 2005, 4481. (e)
Tillman, A. L.; Ye, J.; Dixon, D. J. Chem. Commun. 2006, 1191. (f) McCooey,
S. H.; McCabe, T.; Connon, S. J. J. Org. Chem. 2006, 71, 7494. (g) Mattson,
A. E.; Zuhl, A. M.; Reynolds, T. E.; Scheidt, K. A. J. Am. Chem. Soc. 2006,
128, 4932. (h) Wang, J.; Li, H.; Zu, L.; Jiang, W.; Xie, H.; Duan, W.; Wang,
W. J. Am. Chem. Soc. 2006, 128, 12652. (i) Song, J.; Wang, Y.; Deng, L. J. Am.
Chem. Soc. 2006, 128, 6048. (j) Wang, Y.-Q.; Song, J.; Hong, R.; Li, H.; Deng,
L. J. Am. Chem. Soc. 2006, 128, 8156. (k) Bode, C. M.; Ting, A.; Schaus, S. E.
Tetrahedron 2006, 62, 11499. (l) Hamza, A.; Schubert, G.; Soo´s, T.; Pa´pai, I.
J. Am. Chem. Soc. 2006, 128, 13151. (m) Liu, T.-Y.; Li, R.; Chai, Q.; Long, J.;
Li, B.-J.; Wu, Y.; Ding, L.-S.; Chen, Y.-C. Chem. Eur. J. 2007, 13, 319. (n)
Amere, M.; Lasne, M.-C.; Rouden, J. Org. Lett. 2007, 9, 2621. (o) Hynes, P. S.;
Stranges, D.; Stupple, P. A.; Guarna, A.; Dixon, D. A. Org. Lett. 2007, 9, 2107.
(p) Liu, T.-Y.; Cui, H.-Lei.; Chai, Q.; Long, J.; Li, B.-J.; Wu, Y.; Ding, L.-S.;
Chen, Y.-C. Chem. Commun. 2007, 2228. (q) Biddle, M. M.; Lin, M.; Scheidt,
K. A. J. Am. Chem. Soc. 2007, 129, 3830. (r) Gu, C.-L.; Liu, L.; Sui, Y.; Zhao,
J.-L.; Wang, D.; Chen, Y. J. Tetrahedron: Asymmetry 2007, 18, 455. (s) Song,
J.; Shih, H.-W.; Deng, L. Org. Lett. 2007, 9, 603. (t) Wang, B.; Wu, F.; Wang,
Y.; Liu, X.; Deng, L. J. Am. Chem. Soc. 2007, 129, 768. (u) Zu, L.; Wang, J.;
Li, H.; Xie, H.; Jiang, W.; Wang, W. J. Am. Chem. Soc. 2007, 129, 1036. (v)
Bartoli, G.; Bosco, M.; Carlone, A.; Locatelli, M.; Mazzanti, A.; Sambri, L.;
Melchiorre, P. Chem. Commun. 2007, 722.
(13) Peschiulli, A.; Gun’ko, Y.; Connon, S. J. J. Org. Chem. 2008, 73, 2454.
(14) Allyl alcohol proved the optimum alcohol nucleophile; for example,
use of the more acidic 2,2,2-trichloroethanol under conditions otherwise identical
to those in Table 1, entry 6, furnished the product with 85% conversion and
33% ee after 24 h. Phenol was a similarly unsuitable nucleophile.
6410 J. Org. Chem. Vol. 73, No. 16, 2008