10.1002/anie.201810881
Angewandte Chemie International Edition
COMMUNICATION
Acknowledgements
This work was supported by the Program for the National
Natural Science Foundation of China (Grant No.: 21776132); the
Young Elite Scientist Sponsorship Program by CAST; the Major
Research Plan of the National Natural Science Foundation of
China (Grant No.:21390204); the Jiangsu National Synergetic
Innovation Center for Advanced Bio-Manufacture. Thanks for the
strain recombinant E. coli BL21 (DE3) GlyDH-NOX provided by
Zongbao Zhao, and Ping Wang and Christopher B. Eiben for
copyediting the manuscript.
Keywords: cofactors • cofactor regulation • flavin • synthetic
cofactor • whole-cell biotransformation
Figure 6. The time course of DHA formation. Reaction condition: glycerol (109
mM), NAD+, F1, recombinant E. coli BL21 (DE3) that only expressing GlyDH
or recombinant E. coli BL21 (DE3) that co-expressing GlyDH and NOX (10
g·L-1), PBS buffer (100 mM, pH 8.0), 10 mL, 30℃ , 150 rpm. The data
represented the averages standard deviations for three independent samples.
[1]
a) U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C.
Moore, K. Robins, Nature 2012, 485, 185; b) M. T. Reetz, J. Am. Chem.
Soc. 2013, 135, 12480; c) G. W. Huisman, S. J. Collier, Curr. Opin.
Chem. Biol. 2013, 17, 284.
[2]
[3]
[4]
[5]
[6]
a) M. Wang, B. Chen, Y. Fang, T. Tan, Biotechnol. Adv. 2017, 35, 1032;
b) X. Chen, S. Li, L. Liu, Trends Biotechnol. 2014, 32, 337; c) Y. Wang,
K. Y. San, G. N. Bennett, Curr. Opin. Biotechnol. 2013, 24, 994.
a) S. H. Park, H. U. Kim, T. Y. Kim, J. S. Park, S. S. Kim, S. Y. Lee, Nat.
Commun. 2014, 5, 4618; b) J. Liu, S. H. J. Chan, T. Brock-Nannestad,
C. Jun, S. Y. Lee, C. Solem, P. R. Jensen, Metab. Eng. 2016, 36, 57.
a) X. Wang, Y. J. Zhou, L. Wang, W. Liu, Y. Liu, C. Peng, Z. K. Zhao,
Appl. Environ. Microbiol. 2017, 83, 692; b) G. N. Vemuri, M. A. Eiteman,
E. Altman, Appl. Environ. Microbiol. 2002, 68, 1715.
medical, food and agriculture area.[22] To compare the present
method with those of previously reported systems, we typically
applied the reaction conditions analogous to those reported in
previous studies.[15b] Similar to the above study, the catalytic
activity of the GlyDH recombinant cells was generally low when
no F1 and NAD+ were added (Figure 6, Line a). After exogenous
addition of 5 mM NAD+, the reaction rate was slightly improved
(Figure 6, Line b). With further addition of 0.1 mM F1, the
reaction rate was sharply increased, and DHA production was
burst to 41.8 mM within 1 h (Figure 6, Line c), which was about
6.1-fold higher than that only adding 5 mM NAD+. Under the
same reaction conditions, using whole cell E. coli co-expressed
GlyDH and NOX system, only 17.2 mM yield of DHA was
achieved within 1 h (Figure 6, Line d), which was about 2.4-fold
lower than that of F1 system, and the highest DHA concentration
reached to 25.3 mM after 2.25 h in the GlyDH-NOX system. As
also can be seen from the Figure 6, DHA concentration dropped
slowly over time in all cases, suggesting that DHA may be
further consumed due to the conversion glycerol to DHA is a
reversible reaction.[21b]
a) T. S. Reynolds, C. M. Courtney, K. E. Erickson, L. M. Wolfe, A.
Chatterjee, P. Nagpal, R. T. Gill, Biotechnol. Bioeng. 2017, 114, 2685;
b) D. Brekasis, M. S. B. Paget, EMBO J. 2003, 22, 4856.
a) H. Gröger, F. Chamouleau, N. Orologas, C. Rollmann, K. Drauz, W.
Hummel, A. Weckbecker, O. May, Angew. Chem. Int. Ed. 2006, 45,
5677; Angew. Chem. 2006, 114, 5806; b) S. Kim, J. S. Hahn, Metab.
Eng. 2015, 31, 94.
[7]
[8]
M. Ask, M. Bettiga, V. Mapelli, L. Olsson, Biotechnol. Biofuels 2013, 6,
22.
a) S. Brinkmann-Chen, T. Flock, J. K. B. Cahn, C. D. Snow, E. M.
Brustad, J. A. McIntosh, P. Meinhold, L. Liang, F. H. Arnold, Proc. Natl.
Acad. Sci. USA 2013, 110, 10946; b) T. W. Johannes, R. D. Woodyer,
H. Zhao, Biotechnol. Bioeng. 2007, 96, 18.
[9]
a) C. E. Paul, I. W. C. E. Arends, F. Hollmann, ACS Catal. 2014, 4, 788;
b) T. Knaus, C. E. Paul, C. W. Levy, S. Vries, F. G. Mutti, F. Hollmann,
N. S. Scrutton, J. Am. Chem. Soc. 2016, 138, 1033; c) A. Geddes, C. E.
Paul, S. Hay, F. Hollmann, N. S. Scrutton, J. Am. Chem. Soc. 2016,
138, 11089; d) C. E. Paul, F. Hollmann, Appl. Microbiol. Biotechnol.
2016, 100, 4773; e) C. Nowak, A. Pick, P. Lommes, V. Sieber, ACS
Catal. 2017, 7, 5202; f) D. Ji, L. Wang, S. Hou, W. Liu, J. Wang, Q.
Wang, Z. K. Zhao, J. Am. Chem. Soc. 2011, 133, 20857.
In conclusion, we have demonstrated
a convenient,
practical, and efficient method to regulate cofactor balance in
vivo based on synthetic flavin analogue system, which does not
rely on the modification of the cell membrane through
overexpressing channel proteins or increasing cell membrane
permeability due to F1 could straightforward permeated into the
cell. This work not only provides a promising green strategy to
manipulate redox balance in vivo, but also offers new
opportunities to enable pathway-specific energy transfer for
engineering cell factories to more efficient produce valuable
metabolites. We believe this system is not limited to E. coli and
can be extended to other eukaryotic or prokaryotic cells. More
interesting works towards demonstrating this system in yeast
and other organisms are currently under investigation in our
laboratory.
[10] L. Wang, D. Ji, Y. Liu, Q. Wang, X. Wang, Y. J. Zhou, Y. Zhang, W. Liu,
Z. K. Zhao, ACS Catal. 2017, 7, 1977.
[11]
a) H. Oshikane, M. Watabe, T. Nakaki, Protein Expression Purif. 2018,
148, 40; b) B. Miroux, J. E. Walker, J. Mol. Biol. 1996, 260, 289.
[12] C. Zhu, Q. Li, L. Pu, Z. Tan, K. Guo, H. Ying, P. Ouyang, ACS
Catal. 2016, 6, 4989.
[13] X. Hu, Y. Shi, P. Zhang, M. Miao, T. Zhang, B. Jiang, Compr. Rev. Food
Sci. Food Saf. 2016, 15, 773.
[14]
M. Rauch, S. Schmidt, I. W. C. E. Arends, K. Oppelt, S. Kara, F.
Hollmann, Green Chem. 2017, 19, 376.
[15] a) B. Kaup, S. Bringer-Meyer, H. Sahm, Appl. Microbiol. Biotechnol.
2005, 69, 397; b) W. Yang, Y. Zhou, Z. K. Zhao, Afr. J. Biotechnol.
2013, 12, 4387.
This article is protected by copyright. All rights reserved.