Crane et al.
SCHEME 2. Hofmann Rearrangement NMR Experiment
JOCNote
SCHEME 1. Synthesis of 1 via the Hofmann Rearrangement
a variety of oxidants including bromite,8 N-bromosuccini-
mide (NBS),9 Pb(OAc)4,10 and hypervalent organoiodine
compounds,11 among others. The rearrangement proceeds
via an isocyanate and is mechanistically related to the
Curtius,12 Lossen,13 and Schmidt14 reactions. It has been
used in the synthesis of natural products15 and demonstrated
in large scale manufacturing processes.16
The challenge in the application of this transformation to
substrate 3 is to effect oxidation and rearrangement of the
amide without disturbing the alkene or the cyclopropane in
the molecule. We studied the traditional reagents and pro-
cedures used in the Hofmann rearrangement with limited
success. The succinimide reagents, NBS and N-chlorosucci-
nimide (NCS), were found to effect the desired transforma-
tion in methanol. Unfortunately, using the typical proce-
dures for NBS (refluxing the amide and NBS in methanol in
the presence of base), only partial conversion was observed.
It is known that NBS undergoes decomposition in the
presence of base at higher temperature,17 and as such, excess
NBS can be used to force the reaction to completion.9a
However, using excess NBS resulted in bromination of the prod-
uct. The use of NCS was deemed inferior due to the decom-
position of the reagent via a nucleophilic ring-opening and
subsequent Hofmann rearrangement of the ring-opened prod-
uct as suggested by the presence of impurities in the NMR
spectrum of the crude reaction mixture. The use of NaOCl in
aqueous solution produced a complex mixture of products. The
hypervalent iodine reagent [I,I-bis(trifluoroacetoxy)iodo]ben-
zene (PIFA) was studied but is known to be sensitive to halogen
and solvent impurities18 and was found to be capricious. TCCA
and sodium methoxide in refluxing methanol19 gave the desired
methylcarbamate with some overoxidation of the product to the
N-chloro species. This reaction was deemed promising and
chosen for further study.
Amide 5 was then converted to methylcarbamate 8 in
high yield by a trichloroisocyanuric acid (TCCA)-mediated
Hofmann rearrangement. The Hofmann rearrangement
converts a primary amide to either an amine or a carbamate,
depending on the conditions, with the loss of a carbon atom.7
The reaction is an oxidation and can be performed with
ꢁ
(7) Kurti, L.; Czako, B. Strategic Applications of Named Reactions in
Organic Synthesis; Elsevier: Boston, MA, 2005; pp 210-211.
(8) (a) Kajigaeshi, S.; Nakagawa, T.; Fujisaka, S.; Nishida, A.; Noguchi,
M. Chem. Lett. 1984, 713–714. (b) Radlick, P.; Brown, L. R. Synthesis 1974,
290–292. (c) Granados, R.; Alvarez, M.; Lopez-Calahorra, F.; Salas, M.
Synthesis 1983, 329–330.
(9) (a) Organic Synthesis; Wiley: New York, 2004; Collect. Vol. X, p 549.
(b) Huang, X.; Seid, M.; Keillor, J. W. J. Org. Chem. 1997, 62, 7495–7496.
(10) (a) Jia, Y.-M.; Liang, X.-M.; Chang, L.; Wang, D.-Q. Synthesis 2007,
744–748. (b) Baumgarten, H. E.; Staklis, A. J. Am. Chem. Soc. 1965, 5, 1141–
1142. (c) Acott, B.; Beckwith, A. L. J. Chem. Commun. 1965, 161–162. (d)
Acott, B.; Beckwith, A. L. J.; Hassanali, A.; Redmond, J. W. Tetrahedron
Lett. 1965, 45, 4039–4045. (e) Acott, B.; Beckwith, A. L. J.; Hassanali, A.
Aust. J. Chem. 1968, 21, 197–205. (f) Baumgarten, H. E.; Smith, H. L.;
Staklis, A. J. Org. Chem. 1975, 40, 3554–3561. (g) Simons, S. S., Jr. J. Org.
Chem. 1973, 38, 414–416.
(11) (a) Kita, Y.; Toma, T.; Kan, T.; Fukuyama, T. Org. Lett. 2008, 10,
3251–3253. (b) Yusubov, M. S.; Funk, T. V.; Chi, K.-W.; Cha, E.-H.; Kim,
G. H.; Kirschning, A.; Zhdankin, V. V. J. Org. Chem. 2008, 73, 295–297. (c)
ꢁ
ꢁ
Hernandez, E.; Velez, J. M.; Vlaar, C. P. Tetrahedron Lett. 2007, 48, 8972–
8975. (d) Jiang, Y.; Zhang, Z.; Dipaola, R. S.; Hu, L. Tetrahedron 2007, 63,
10637–10645. (e) Satoh, N.; Akiba, T.; Yokoshima, S.; Fukuyama, T.
Tetrahedron 2009, 65, 3239–3245. (f) Inai, M.; Goto, T.; Furuta, T.;
Wakimoto, T.; Kan, T. Tetrahedron: Asymmetry 2008, 19, 2771–2773. (g)
(14) (a) Bach, R. D.; Wolber, G. J. J. Org. Chem. 1982, 47, 239–245. (b)
Sahasrabudhe, K.; Gracias, V.; Furness, K.; Smith, B. T.; Katz, C. E.;
€
ꢁ
Reddy, S.; Aube, J. J. Am. Chem. Soc. 2003, 125, 7914–7922. (c) Mossman,
Palmer, A. M.; Munch, G.; Scheufler, C.; Kromer, W. Tetrahedron Lett.
ꢁ
ꢁ
2009, 50, 3920–3922. (h) Stecko, S.; Jurczak, M.; Staszewska-Krajewska, O.;
Solecka, J.; Chmielewski, M. Tetrahedron 2009, 65, 7056–7063. (i) Togo, H.;
Nabana, T.; Yamaguchi, K. J. Org. Chem. 2000, 65, 8391–8394. (j) Yu, C.;
Jiang, Y.; Liu, B.; Hu, L. Tetrahedron Lett. 2001, 42, 1449–1452.
(12) (a) Weinstock, J. J. Org. Chem. 1961, 26, 3511. (b) Shioiri, T.; Ninomiya,
K.; Yamada, S.-i. J. Am. Chem. Soc. 1972, 94, 6203–6205. (c) Saunders, J. H.;
Slocombe, R. J. Chem. Rev. 1948, 43, 203–218.
C. J.; Aube, J. Tetrahedron 1996, 52, 3403–3408. (d) Aube, J.; Milligan, G. L.
J. Am. Chem. Soc. 1991, 113, 8965–8966.
(15) (a) Evans, D. A.; Scheidt, K. A.; Downye, C. W. Org. Lett. 2001, 3,
3009–3012. (b) DeMong, D. E.; Williams, R. M. J. Am. Chem. Soc. 2003, 125,
8561–8565.
(16) McDermott, T. S.; Bhagavatula, L.; Borchardt, T. B.; Engstrom,
K. M.; Gandarilla, J.; Kotecki, B. J.; Kruger, A. W.; Rozema, M. J.; Sheikh,
A. Y.; Wagaw, S. H.; Wittenberger, S. J. Org. Process Res. Dev. 2009, 13,
1145–1155.
(17) Senanayake, C. H.; Fredenburgh, L. E.; Reamer, R. A.; Larsen, R. D.;
Verhoeven, T. R.; Reider, P. J. J. Am. Chem. Soc. 1994, 116, 7947–7948.
(18) (a) Loudon, G. M.; Radhakrishna, A. S.; Almond, M. R.; Blodgett,
J. K.; Boutin, R. H. J. Org. Chem. 1984, 49, 4272–4276. (b) Organic
Synthesis; Wiley: New York, 1993; Collect. Vol. VIII, p 132.
(19) De Luca, L.; Giacomelli, G.; Nieddu, G. Synlett 2005, 223–226.
ꢁ
(13) (a) Dube, P.; Fine Nathel, N. F.; Vetelino, M.; Couturier, M.;
Aboussafy, C. L.; Pichette, S.; Jorgensen, M. L.; Hardink, M. Org. Lett.
2009, 11, 5622–5625. (b) Stafford, J. A.; Gonzales, S. S.; Barrett, D. G.; Suh,
E. M.; Feldman, P. L. J. Org. Chem. 1998, 63, 10040–10044. (c) Bittner, S.;
Grinberg, S.; Kartoon, I. Tetrahedron Lett. 1974, 23, 1965–1968. (d) Hoare,
D. G.; Olson, A.; Koshland, D. E., Jr. J. Am. Chem. Soc. 1968, 90, 1638–
1642. (e) Anilkumar, R.; Chandrasekhar, S.; Sridhar, M. Tetrahedron Lett.
2000, 41, 5291–5293.
278 J. Org. Chem. Vol. 76, No. 1, 2011