M. Maddani, K. R. Prabhu / Tetrahedron Letters 49 (2008) 4526–4530
4529
OH
CHO
1, Reflux, O , toluene, 40 h
2
N
OMe
MeO
No reaction
2d
2a
CHO
OH
OH
N
N
N
3
1, Reflux, O , toluene, 20 h
2
+
+
2d (50%)
recovered)
MeO
MeO
MeO
MeO
2d
2d
2
2a, 131%
OH
CHO
+
OH
CHO
N
N
N
1, Reflux, O , toluene, 20 h
3
2
+
+
2d (50%)
recovered)
MeO
MeO
MeO
8
8a (88%)
2a (45%)
Scheme 3. Reaction of various azides and oxime 2d with 1.
Scheme 1. The alcohol 2b and p-methoxybenzyl chloride remained
unaffected under these reaction conditions. Clearly, this method
provides an opportunity to synthesize aldehydes from azides in
the presence of alcohols, chlorides, olefins, esters and ketones.
Also, this strategy produces only the corresponding aldehyde,
without any over-oxidation.
Acknowledgements
We are thankful to Professor S. Chandrasekaran for encourage-
ment and laboratory facilities. We are grateful to IISc. for the finan-
cial support.
Interestingly, the reaction of azide 2 and reagent 1 (10 mol %) in
H2O (or toluene) in the absence of molecular oxygen (reflux, 40 h)
produced the corresponding aldehyde 2a in 10% yield, 90% of the
starting material was recovered (by 1H NMR).12 This experiment
indicates that molecular oxygen is essential for the reaction. This
observation contrasts that observed in the reaction of xanthine
with xanthine oxidase where the oxygen is transferred from
water.13
A tentative mechanism based on the available information in
the literature is presented in Scheme 2.5 Reagent 1 reacts with ben-
zyl azide to form complex I, which in turn could lose nitrogen to
generate complex II.14 Further, the complex II could lose a proton
to furnish III, along with the oxime. The oxime thus generated
could be converted to the corresponding aldehyde under the reac-
tion conditions. Furthermore, the complex III could react with
molecular oxygen to produce the reagent 1 and the cycle contin-
ues. The catalytic cycle persists until at the end of the reaction
the cycle terminates in producing a molybdenum complex, which
can no longer catalyze the oxygen transfer reaction.15
To substantiate the proposed intermediacy of an oxime, we
performed a few control experiments (Scheme 3). Surprisingly,
the reaction of p-methoxybenzaldoxime (2d) and 1 under an
oxygen atmosphere (toluene or water as the solvent) at reflux
(40 h) did not furnish the expected aldehyde; however, the starting
material was recovered unchanged. Similar reaction of p-meth-
oxybenzaldoxime (2d) and p-methoxybenzyl azide (2) with 1
under the standard reaction conditions produced the aldehyde 2a
in 131% yield, indicating that the oxime is also converted to
aldehyde 2a under the reaction conditions employed for the
oxidation. The reaction of p-methoxybenzaldoxime (2d) and 2-
(azidomethyl)naphthalene (8) in toluene with 1 under an oxygen
atmosphere produced 2-naphthaldehyde (8a, 88% yield) and
p-methoxybenzaldehyde (2a, 45%). Presumably, the species
formed from azides may be essential for the conversion of oximes
to aldehydes.
In conclusion, we have reported a useful, chemoselective aero-
bic oxidation of benzylic azides to the corresponding aldehydes.16
Interestingly, over-oxidation to the acid was not observed.
Preliminary studies indicate that the oxygen is transferred from
molecular oxygen and not from the solvent. This aerobic reaction
may be helpful in understanding the role of molybdenum in
molybdo-enzyme-catalyzed oxidations in Nature.
Supplementary data
The analytical data, spectral data, and 1H and 13C NMR spectra
of compounds 2–13 and 2a–13a are available. Supplementary data
associated with this article can be found, in the online version, at
References and notes
1. (a) Li, C.; Zheng, P.; Li, J.; Zhang, H.; Cui, Y.; Shao, Q.; Ji, X.; Zhang, J.; Zhao, P.; Xu,
Y. Angew. Chem., Int. Ed. 2003, 42, 5063; (b) Velusamy, S.; Ahamed, M.;
Punniyamurthy, T. Org. Lett. 2004, 6, 4821; (c) Gupta, M.; Paul, S.; Gupta, R.;
Loupy, A. Tetrahedron Lett. 2005, 46, 4957 and references cited therein.
2. For reactions in water see: (a) Ribe, S.; Wipf, P. Chem. Commun. 2001, 299–300;
(b) Hayashi, Y. Angew. Chem., Int. Ed. 2006, 45, 8103; (c) Narayan, S.; Muldon, J.;
Finn, M. G.; Fokin, V. V.; Kolb, H. C.; Sharpless, K. B. Angew. Chem., Int. Ed. 2005,
44, 3275; (d) Dioumaev, V. K.; Bullock, R. M. Nature 2003, 424, 530.
3. (a) ten Brink, G. J.; Arends, I. W. C. E.; Sheldon, R. A. Science 2000, 287, 1636; (b)
Dudas, J.; Parkinson, C. J.; Cukan, V.; Chokwe, T. B. Org. Process Res. Dev. 2005, 9,
976 and references cited therein; (c) Chauhan, S. M. S.; Kumar, A.; Srinivas, K. A.
Chem. Commun. 2003, 2348; (d) Noyori, R.; Aoki, M.; Sato, K. Chem. Commun.
2003, 1977; (e) Tang, J.; Zhu, J.; Shen, Z.; Zhang, Y. Tetrahedron Lett. 2007, 48,
1919; (f) Holm, R. H. Chem. Rev. 1987, 87, 1401; (g) Chen, G. J.-J.; McDonald, J.
W.; Newton, W. E. Inorg. Chem. 1976, 15, 2612; (h) Harlan, E. W.; Berg, J. M.;
Holm, R. H. J. Am. Chem. Soc. 1986, 108, 6992; (i) Barral, R.; Board, C.; de Roch, I.
S.; Sajus, L. Tetrahedron Lett. 1972, 13, 1963.
4. (a) Markó, I. E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.; Urch, C. J. Science 1996,
274, 2044; (b) Wang, J.; Yan, L.; Qian, G.; Wang, X. Tetrahedron Lett. 2006, 47,
7171; (c) Markó, I. E.; Gautier, A.; Dumeunier, R.; Doda, K.; Philippart, F.;
Brown, S. M.; Urch, C. J. Angew. Chem., Int. Ed. 2004, 43, 1588.
5. (a) Arnaiz, F. J.; Aguado, R.; De Ilarduya, J. M. M. Polyhedron 1994, 13, 3257 and
references cited therein; (b) Jeyakumar, K.; Chand, D. K. Tetrahedron Lett. 2006,
47, 4573; (c) Neumann, R.; Khenkin, A. M. Chem. Commun. 2006, 2529.
6. (a) Kühn, F. E.; Santos, A. M.; Abrantes, M. Chem. Rev. 2006, 106, 2455; (b)
Schrock, R. R. J. Mol. Catal. A: Chem. 2004, 213, 21; (c) Lehtonen, A.; Sillanpää, R.
Polyhedron 2005, 24, 257–265; (d) Arzoumanian, H. Coordin. Chem. Rev. 1998,
178–180, 191; (e) Wang, G.; Chen, G.; Luck, R. L.; Wang, Z.; Mu, Z.; Evans, D. G.;
Duan, X. Inorg. Chim. Acta 2004, 357, 3223.
7. (a) Enemark, J. H.; Cooney, J. J. A.; Wang, J. J.; Holm, R. H. Chem. Rev. 2004, 104,
1175; (b) Wilson, G. L.; Greenwood, R. J.; Pilbrow, J. R.; Spence, J. T.; Wedd, A. G.
J. Am. Chem. Soc. 1991, 113, 6803; (c) Morris, R. H.; Ressner, J. M.; Sawyer, J. F.;
Shiralian, M. J. Am. Chem. Soc. 1984, 106, 3683; (d) Sugimoto, H.; Siren, K.;
Tsukube, H.; Tanaka, K. Eur. J. Inorg. Chem. 2003, 2633 and references cited
therein.
8. Maddani, M.; Prabhu, K. R. Tetrahedron Lett. 2007, 48, 7151.
9. (a) Moore, F. W.; Larson, M. L. Inorg. Chem. 1967, 6, 998; (b) Newton, W. E.;
Corbin, J. L.; Bravard, D. C.; Searles, J. E.; McDonald, J. W. Inorg. Chem. 1974, 13,
1100.
10. Barlan, A. U.; Basak, A.; Yamamoto, H. Angew. Chem., Int. Ed. 2006, 45, 5849.
11. (a) Mallat, T.; Baiker, A. Chem. Rev. 2004, 104, 3037 and references cited
therein; (b) Lorber, C. Y.; Smidt, S. P.; Osborn, J. A. Eur. J. Inorg. Chem. 2000, 655;