C O M M U N I C A T I O N S
obtained from these calculations afforded ∆H ) -7.6 kcal/mol
for the reaction shown in eq 1. The exothermicity computed for
this reaction is in line with experimental findings and indicates that
the fluoride ion affinity (FIA) of [2]+ significantly exceeds that of
[1]+. Furthermore, [1]+ and [2]+ have virtually identical LUMO
energies (-2.57 eV for [1]+ and -2.56 eV for [2]+) thus suggesting
that inductive effects in these cationic boranes19 do not play a major
role in the increased FIA of [2]+.
In summary, the results reported herein show that the F- affinity
of cationic boranes can be drastically enhanced via cooperative
effects arising, in the present case, from the enforced proximity of
a Lewis acidic phosphonium and borane moiety.
Figure 1. Crystal structure of [2]+ (left) and 2-F (right) (50% ellipsoid,
mesityl groups represented by thin lines, H-atoms omitted). Pertinent
parameters are provided in the text.
Acknowledgment. This work was supported by the National
Science Foundation (CHE-0646916), the Welch Foundation (A-
1423), the Petroleum Research Funds (Grant 44832-AC4) and the
US Army Medical Research Institute of Chemical Defense as well
as by the Centre National de la Recherche Scientifique, the
Universite´ Paul Sabatier, and the Agence Nationale de la Recherche
(program BILI).
Supporting Information Available: Experimental and computa-
tional details. Crystallographic data for [2]I and 2F in CIF format. This
Figure 2. AIM and NBO analyses of the B-FfP interaction. (Top) AIM
electron density map with relevant bond paths and bond critical points;
(bottom) NBO contour plot showing the lp(F)fσ*(P-C) interaction.
References
(1) Environmental Health Criteria 227. IPCS International Programme on
Chemical Safety; World Health Organization: New York, 2002.
(2) (a) Sessler, J. L.; Gale, P. A.; Cho, W.-S. Anion Receptor Chemistry;
Stoddard, J. F., Ed.; Royal Society of Chemistry: Cambridge, 2006. (b)
Martinez-Manez, R.; Sancenon, F. Chem. ReV. 2003, 103, 4419. (c) Choi,
K.; Hamilton, A. D. Coord. Chem. ReV. 2003, 240, 101. (d) Gale, P. A.
Coord. Chem. ReV. 2003, 240, 191. (e) Sessler, J. L.; Camiolo, S.; Gale,
P. A. Coord. Chem. ReV. 2003, 240, 17. (f) Schmidtchen, F. P.; Berger,
M. Chem. ReV. 1997, 97, 1609.
concerns the F(1)-P(1)-C(31) angle of 176.36(9)° which indicates
that the fluorine atom occupies an axial coordination site directly
opposite to a phenyl ring. In agreement with this view, we note a slight
elongation of the P(1)-C(31) bond (1.813(3) Å) when compared to
the P(1)-C(41) bond (1.796(3) Å) and a notable increase in the sum
of angle R on going from [2]+ to 2-F (R ) 340.4° in 2-F vs 335.2° in
[2]+). Altogether, the structural and spectroscopic results support the
presence of a B-FfP interaction, which may be the origin of the
increased fluorophilicity of [2]+. These results also establish that the
phosphorus atom of [2]+ is acting as a Lewis acid, an intrinsic property
of phosphonium cations12 that has so far never been exploited for anion
sensing.13 In fact, the structure of 2-F is strikingly similar to that of
the anionic fluoride chelate complexes of [1-Mes2B-2-FPh2Si-(C6H4)]4
and [1-MePhB-2-FMe2Sn-Fc]17 (Fc (Fc ) ferrocenediyl) which
possess Lewis acidic fluorosilane and fluorostanane moieties, respectively.
The DFT optimized structure of 2-F is in excellent agreement
with that experimentally determined (see Supporting Information).
In particular, the P(1)-F(1) separation of 2.665 Å is close to that
observed in the crystal (2.666(2) Å). Atoms in molecules (AIM)18
calculations show the presence of a bond path between the P(1)
(3) (a) Day, J. K.; Bresner, C.; Coombs, N. D.; Fallis, I. A.; Ooi, L.-L.; Aldridge,
S. Inorg. Chem. 2008, 47, 793. (b) Dusemund, C.; Sandanayake, K. R. A. S.;
Shinkai, S. J. Chem. Soc. Chem. Commun. 1995, 333. (c) DiCesare, N.;
Lakowicz, J. R. Anal. Biochem. 2002, 301, 111. (d) Yamaguchi, S.;
Akiyama, S.; Tamao, K. J. Am. Chem. Soc. 2001, 123, 11372. (e) Parab,
K.; Venkatasubbaiah, K.; Ja¨kle, F. J. Am. Chem. Soc. 2006, 128, 12879.
(f) Sun, Y.; Ross, N.; Zhao, S. B.; Huszarik, K.; Jia, W. L.; Wang, R. Y.;
Macartney, D.; Wang, S. J. Am. Chem. Soc. 2007, 129, 7510. (g) Agou,
T.; Kobayashi, J.; Kawashima, T. Org. Lett. 2005, 7, 4373. (h) Williams,
V. C.; Piers, W. E.; Clegg, W.; Elsegood, M. R. J.; Collins, S.; Marder,
T. B. J. Am. Chem. Soc. 1999, 121, 3244.
(4) Kawachi, A.; Tani, A.; Shimada, J.; Yamamoto, Y. J. Am. Chem. Soc.
2008, 130, 4222.
(5) Katz, H. E. J. Org. Chem. 1985, 50, 5027.
(6) Mela¨ımi, M.; Sole, S.; Chiu, C.-W.; Wang, H.; Gabba¨ı, F. P. Inorg. Chem.
2006, 45, 8136.
(7) Mela¨ımi, M.; Gabba¨ı, F. P. J. Am. Chem. Soc. 2005, 127, 9680.
(8) Lee, M. H.; Agou, T.; Kobayashi, J.; Kawashima, T.; Gabba¨ı, F. P. Chem.
Commun. 2007, 1133.
(9) Chiu, C.-W.; Gabba¨ı, F. P. J. Am. Chem. Soc. 2006, 128, 14248.
(10) Lee, M. H.; Gabba¨ı, F. P. Inorg. Chem. 2007, 46, 8132.
(11) The Lewis acidic behavior of phosphenium and phosphadiazonium cations
has been reported; see for example: Davidson, R. J.; Weigand, J. J.; Burford,
N.; Cameron, T. S.; Decken, A.; Werner-Zwanziger, U. Chem. Commun.
2007, 4671 and references cited therein.
(12) (a) Canac, Y.; Lepetit, C.; Abdalilah, M.; Duhayon, C.; Chauvin, R. J. Am.
Chem. Soc. 2008, 130, 8406. (b) Kornath, A.; Neumann, F.; Oberhammer,
H. Inorg. Chem. 2003, 42, 2894.
(13) (a) Terada, M.; Kouchi, M. Tetrahedron 2005, 62, 401. (b) Mukaiyama,
T.; Kashiwagi, K.; Matsui, S. Chem. Lett. 1989, 1397.
and F(1) atoms with an electron density F(r) of 2.05 × 10-2
e
bohr-3 at the BCP (Figure 2). The presence of this interaction can
be further asserted through a natural bond orbital (NBO) analysis
performed at the optimized geometry. This analysis identifies a
donor-acceptor interaction involving a fluorine lone-pair as a donor
and the phosphorus-carbon σ*-orbital as the acceptor (Figure 2).
Moreover, a deletion calculation carried out by zeroing the
Kohn-Sham matrix elements corresponding to the lp(F)fσ*(P-C)
interaction leads to an increase of the total energy of the molecule
by 5.0 kcal/mol. Further insight into the increased fluorophilicity
of [2]+ was gained from a computation of the enthalpy for the
reaction shown in eq 1. To this end, molecules [1]+, [2]+, and 1-F
were optimized at the level of theory used for 2-F. Each molecule
was then subjected to a single point energy calculation (6-
311+g(2d,p) basis set for all atoms) using the polarizable continuum
model (PCM) with methanol as a solvent. The relative enthalpies
(14) (a) Bontemps, S.; Bouhadir, G.; Miqueu, K.; Bourissou, D. J. Am. Chem.
Soc. 2006, 128, 12056. (b) Bebbington, M. W. P.; Bontemps, S.; Bouhadir,
G.; Bourissou, D. Angew. Chem., Int. Ed. 2007, 46, 3333. (c) Moebs-
Sanchez, S.; Bouhadir, G.; Saffon, N.; Maron, L.; Bourissou, D. Chem.
Commun. 2008, 3435.
(15) Poulin, D. D.; Cavell, R. G. Inorg. Chem. 1974, 13, 3012.
(16) Batsanov, S. S. Inorg. Mater. 2001, 37, 871.
(17) Boshra, R.; Venkatasubbaiah, K.; Doshi, A.; Lalancette, R. A.; Kakalis,
L.; Ja¨kle, F. Inorg. Chem. 2007, 46, 10174.
(18) Konig, F. B.; Schonbohm, J.; Bayles, D. J. Comput. Chem. 2001, 22, 545.
(19) Inductive effects have been invoked to explain the high fluorophilicity of
[1-Mes2B-2-Me3N-(C6H4)]+ which does not possess
a Lewis acidic
pnictogen atom like [2]+; see: Hudnall, T. W.; Gabba¨ı, F. P. J. Am. Chem.
Soc. 2007, 129, 11978.
JA804492Y
9
J. AM. CHEM. SOC. VOL. 130, NO. 33, 2008 10891