8.6 Hz, 2H), 7.46 (d, J = 8.6, 2H), 4.08 (m, 1H), 2.69 (dd, J = 11.6,
3.4 Hz, 1H, H6), 0.79 (d, J = 6.3 Hz, 3H). For more information
see supporting information.
Notes and references
1 For some examples, see: (a) A. R. Angeles, D. C. Dorn, C. A. Kou,
M. A. S. Moore and S. J. Danishefsky, Angew. Chem., Int. Ed., 2007,
46, 1451; (b) W. Zhao and J. Zhang, Org. Lett., 2011, 13, 688; (c) H.
Haning, C. Giro-Manas, V. L. Paddock, C. G. Bochet, A. J. P. White,
G. Bernardinelli, I. Mann, W. Oppolzer and A. G. Spivey, Org. Biomol.
Chem., 2011, 9, 2809.
2 (a) X. Wang, C. M. Reisinger and B. List, J. Am. Chem. Soc., 2008,
130, 6070; (b) E. Zang, C-A. Fan, Y-Q. Tu, F. M. Zhang and Y-L.
Song, J. Am. Chem. Soc., 2009, 131, 14626; (c) H. Jiang, N. Holub
and K. A. Jørgensen, Proc. Natl. Acad. Sci. U. S. A., 2010, 107,
20630.
3 (a) Y. Chen and T. Ju, Org. Lett., 2011, 13, 86; (b) G. Mehta, S.
K. Chattopadhyay and J. D. Umarye, Tetrahedron Lett., 1999, 40,
4881.
4 See for example: G. Franck, K. Bo¨rdner and G. Helmchen, Org. Lett.,
2010, 12, 3886. See also ref. 1a.
(2R, 3R, 5R, 6R)-2,3-dihydroxy-5-methyl-6-(4-nitrophenyl)-
cyclohexanone (9a). A 5 mL round-bottomed flask was charged
with 40 mg of a,b-unsaturated ketone 5a (1 equiv., 0.158 mmol)
and dissolved in 800 mL of t-BuOH. Then, 300 mg of AD-
mix-a, 40 mg of NaHCO3 (3 equiv, 0.474 mmol), 15 mg of
methylsulfonamide (1 equiv., 0.158 mmol), 10 mg of K2OsO2(OH)2
(0.16 equiv, 0.027 mmol) and 800 mL of H2O were subsequently
added and the mixture was vigorously stirred at room temperature
for 4 days. Whereupon the mixture was transferred to a 25 mL
Erlenmeyer flask, diluted with 10 mL of EtOAc and stirred for 1
h with 10 mL of a 40% solution of NaHSO3. The aqueous layer
was extracted with EtOAc (15 mL ¥ 4), the combined organic
layers were sequentially washed with a 10% solution of NaOH
and brine, dried over MgSO4 and the solvent evaporated under
vacuum. The crude was purified by flash chromatography (2 : 1 to
1 : 1 n-hexane : EtOAc) to afford 23 mg of diastereomerically pure
9a (50% yield). 1H NMR (500 MHz, CDCl3): d 8.23 (d, J = 8.6 Hz,
2H), 7.28 (d, J = 8.6 Hz, 2H), 4.47 (dd, J = 5.5, 3.5 Hz, 1H), 4.34
(bs, 1H), 3.80 (d, J = 2.0 Hz, OH), 3.38 (d, J = 11.8 Hz), 2.67 (bs,
OH), 2.65 (m, 1H), 2.31 (dt, Jd = 14.7 Hz, Jt = 3.8 Hz, 1H), 1.84
(t, J = 14.3 Hz, 1H), 0.86 (d, J = 6.5 Hz, 3H). 13C NMR (75 MHz)
(benzene-d6): d 206.8(C), 147.6 (C), 143.3 (C), 130.4 (2CH), 123.5
(2CH), 77.1 (CH), 71.8 (CH), 61.6 (CH), 36.8 (CH2), 34.7 (CH),
19.9 (CH3). MS (ESI) m/z 248 (M+1+, 75), 149 (81), 74 (61). MS
(ESI) calcd. for C13H14NO4 [M+1]+: 248.0917; found: 248.0925.
[a]2D0 +32.1 (c 1.0, CHCl3).
5 (a) A. Carlone, M. Marigo, C. North, A. Landa and K. A. Jørgensen,
Chem. Commun., 2006, 4928; (b) P. Bolze, G. Dickmeiss and K. A.
Jørgensen, Org. Lett., 2008, 10, 3753; (c) L-L. Wang, L. Peng, J-F. Bai,
Q-C. Huang, X-Y. Xu and L-X. Wang, Chem. Commun., 2010, 46,
8064.
6 For some examples as intermediates to prepare natural products: (a) A.
Biechy, S. Hachisu, B. Quiclet-Sire, L. Ricard and S. Z. Zard, Angew.
Chem., Int. Ed., 2008, 47, 1436; (b) N. Yamamoto, H. Fujii, S. Imaide,
S. Hirayama, T Nemoto, J. Inokoshi, H Tomoda and H. Nagase, J.
Org. Chem., 2011, 76, 2257; (c) D. Sole, J. Bonjoch and J. Bosch, J. Org.
Chem., 1996, 61, 4194; (d) D Sole, S. Garc´ıa-Rubio, L. Vallverdu and
J. Bonjoch, J. Org. Chem., 2001, 66, 5266.
7 We have not found any method to prepare 6-aryl-5-substituted cyclo-
hexenones in enantiomerically pure form. For the synthesis of a related
compound in racemic version see H. E. Zimmerman and D. Lynch, J.
Am. Chem. Soc., 1985, 56, 7745.
8 M. B. Cid, S. Duce, S. Morales, E. Rodrigo and J. L. Garc´ıa Ruano,
Org. Lett., 2010, 12, 3586.
9 The potential of the nitrophenyl moiety as a non-conventional activat-
ing group for nucleophiles has also been used recently by Melchiorre’s
group incorporating nitrobenzylpyridines into organocatalytic pro-
cesses. See: S. Vera, Y. Liu, M. Marigo, E. C. Escudero-Ada´n and
P. Melchiorre, Synlett, 2011, 489.
10 For some examples on one-pot strategies using a,b-unsuturated
aldehydes that afford complex structures, see: (a) B. Simmons, A. M.
Walji and D. W. C. MacMillan, Angew. Chem., Int. Ed., 2009, 48, 4349;
(b) Ł. Albrecht, L. K. Ransborg, B. Gschwend and K. A. Jørgensen,
J. Am. Chem. Soc., 2010, 132, 17886; (c) K. L. Jensen, P. T. Franke,
C. Arro´niz, S. Kobbelgaard and K. A. Jørgensen, Chem.–Eur. J., 2010,
16, 1750 and references cited therein. For an impressive example see:
(d) M. Reiter, S. Torssell, S. Lee and D. W. C. MacMillan, Chem. Sci.,
2010, 1, 37.
11 See: (a) V. K. Aggarwal and B. Olofsson, Angew. Chem., Int. Ed., 2005,
44, 5516 and references cited therein; (b) A. Yanagisawa, T. Touge and
T. Arai, Angew. Chem., Int. Ed., 2005, 44, 1546. For a recent racemic
example see: (c) X. Huang and M. Maulide, J. Am. Chem. Soc., 2011,
133, 8510.
12 For a-arylation of carbonyl compounds using transition metal catalysis
see: (a) J. M. Fox, X. Huang, A. Chieffi and S. L. Buchwald, J. Am.
Chem. Soc., 2000, 122, 1360; (b) T. Hamada, A. Chieffi, J. Ahman and
S. L. Buchwald, J. Am. Chem. Soc., 2002, 124, 1261; (c) X. Liao, Z.
Weng and J. F. Hartwig, J. Am. Chem. Soc., 2008, 130, 195; (d) P. M.
Lundin, J. Esquivias and G. C. Fu, Angew. Chem., Int. Ed., 2009, 48,
154; (e) For other methods that do not employ transition metal catalysis
see ref. 11c and references cited therein.
(1R, 3R, 4R, 6R)-4-methyl-3-(4-nitrophenyl)-7-oxabicyclo-
[4.1.0]heptan-2-one (10a). To a solution of 5a (50 mg, 0.21
mmol, 1 equiv.) in THF (1 mL) at -78 ◦C, a solution of tert-
butylhydroperoxide (TBPH) (5–6 M in decane, 3 equiv) and 4
drops of benzyl trimethylammonium hydroxide (Triton B) (40% in
MeOH) were sequentially added. The mixture was stirred at room
temperature overnight and then treated with saturated aqueous
solution of Na2SO3 and extracted with EtOAc. The residue was
purified by flash chromatography (n-hexane/EtOAc 5 : 1), to give
1
10a as colourless oil (48% yield). H NMR (500 MHz)(benzene-
d6): d 7.77 (d, J = 8.8 Hz, 2H), 6.69 (d, J = 8.8, 2H), 3.00 (d, J = 4.0
Hz, 1H), 2.82 (t, J = 3.8 Hz, 1H), 2.15 (d,J = 11.8 Hz, 1H), 2.02–
1.92 (m, 1H), 1.66 (dt, Jt = 3.8 Hz, Jd = 15.0 Hz, 1H), 0.87 (dd, J =
15.0, 12.0 Hz, 1H), 0.26 (d, J = 6.5 Hz, 3H). 13C NMR (75 MHz) d
204.1 (CO), 147.2 (C), 146.1 (C), 130.1 (2CH), 123.9 (2CH), 61.6
(CH), 54.6 (CH), 54.4 (CH), 31.5 (CH2), 28.7 (CH), 19.5 (CH3).
MS (ESI) m/z 266 (M+1+, 16), 139 (43), 74 (100). MS (ESI) calcd.
for C13H15NO5Na [M+Na]+: 288.0842; found: 288.0837. [a]2D0 -9.1
(c 0.7, CHCl3).
13 For some organocatalytic examples: (a) K. L. Jensen, P. T. Franke, L.
T. Nielsen, K. Daasbjerg and K. A. Jørgensen, Angew. Chem., Int. Ed.,
2010, 49, 129; (b) J. C. Conrad, J. Kong, B. N. Laforteza and D. W. C.
MacMillan, J. Am. Chem. Soc., 2009, 131, 11640.
14 D. L. J. Clive, P. L. Wickens and G. V. J. da Silva, J. Org. Chem., 1995,
60, 5532.
Acknowledgements
We thank the Spanish Government (CTQ-2009-12168), CAM
(AVANCAT CS2009/PPQ-1634) and UAM-CAM (CCG10-
UAM/PPQ-5769) for financial support. S.D. thanks the Comu-
nidad Auto´noma de Madrid for a predoctoral fellowship. We
also thank the Centro de Computacio´n Cient´ıfica de la UAM
for generous allocation of computer time and the laboratory of
mass spectrometry of the UAM (SIdI).
15 (a) Y. Hayashi, H. Gotoh, T. Hayashi and M. Shoji, Angew. Chem., Int.
Ed., 2005, 44, 4212; (b) M. Marigo, D. Fielenbach, A. Braunton, A.
Kjaersgaard and K. A. Jørgensen, Angew. Chem., Int. Ed., 2005, 44,
3703. For a review, see: (c) C. Palomo and A. Mielgo, Angew. Chem.,
Int. Ed., 2006, 45, 7876.
16 For details, see Electronic Supplementary Information‡.
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 8253–8260 | 8259
©