354
DENMARK AND BURK
18. Denmark SE, Burk MT, Hoover AJ. On the absolute configurational
intimate involvement of Ph3P=S in the catalytic cycle was
clearly demonstrated. Furthermore, no step prior to the
entry of olefin 1l into the catalytic cycle can be rate
determining. More definite conclusions will require
reinvestigation of the system at lower temperature or
the observation of a reactive intermediate.
stability of bromonium and chloronium ions.
J Am Chem Soc
2010;132:1232–1233.
19. Denmark SE, Burk MT. Lewis base catalysis of bromo- and
iodolactonization, and cycloetherification. Proc Natl Acad Sci U S A
2010;107:20655–20660.
20. Chen J, Zhou L, Tan CK, Yeung Y-Y. An Enantioselective Approach
toward 3,4-Dihydroisocoumarin through the Bromocyclization of
Styrene-type Carboxylic Acids. J Org Chem 2011;77:999–1009.
21. Zhou L, Tan CK, Jiang X, Chen F, Yeung Y-Y. Asymmetric
bromolactonization using amino-thiocarbamate catalyst. J Am Chem Soc
2010;132:15474–15476.
22. Tan CK, Zhou L, Yeung Y-Y. Aminothiocarbamate-catalyzed asymmetric
bromolactonization of 1,2-disubstituted olefinic acids. Org Lett
2011;13:2738–2741.
ACKNOWLEDGMENT
We are grateful to the National Institutes of Health
(R01 GM82535)) for financial support, and to Dr. D. Kalyani
for assistance and helpful discussions. M.T.B. thanks the Uni-
versity of Illinois for a Seemon H. Pines Graduate Fellowship.
23. Murai K, Matsushita T, Nakamura A, Fukushima S, Shimura M, Fujioka
H. Asymmetric Bromolactonization Catalyzed by a C3-Symmetric Chiral
Trisimidazoline. Angew Chem Int Ed 2010;49:9174–9177.
SUPPORTING INFORMATION
24. Zhang W, Zheng S, Liu N, Werness JB, Guzei IA, Tang W.
Enantioselective bromolactonization of conjugated (Z)-enynes. J Am
Chem Soc 2010;132:3664–3665.
Additional supporting information may be found in the online version of
this article at the publisher’s web-site.
25. Pauling L. The Principles Determining the Structure of Complex Ionic
Crystals. J Am Chem Soc 1929;51:1010–1026.
26. Coulomb C-A. Premier mémoire sur l’électricité et le magnétisme. Mém
Acad R Sci Inst Fr 1785:569–577.
LITERATURE CITED
1. Castellanos A, Fletcher SP. Current methods for asymmetric halogenation
27. Denmark SE, Kalyani D, Collins WR. Preparative and mechanistic studies
toward the rational development of catalytic, enantioselective
selenoetherification reactions. J Am Chem Soc 2010;132:15752–15765.
of olefins. Chem Eur J 2011;17:5766–5776.
2. Tan CK, Zhou L, Yeung YY. Organocatalytic Enantioselective
Halolactonizations: Strategies of Halogen Activation. Synlett
2011;10:1335–1339.
3. Hennecke U. New Catalytic Approaches towards the Enantioselective
Halogenation of Alkenes. Chem Asian J 2012;7:456–465.
4. Denmark SE, Kuester WE, Burk MT. Catalytic, Asymmetric
Halofunctionalization of Alkenes- A Critical Perspective. Angew Chem
Int Ed 2012;51:10938–10953.
5. Cardillo G, Orena M. Sterocontrolled cyclofunctionalizations of
double bonds through heterocyclic intermediates. Tetrahedron
1990;46:3321–3408.
6. Montana AM, Batalla C, Barcia JA, Montana AM, Batalla C. Intramolecu-
lar Haloetherification and Transannular Hydroxycyclization of Alkenes. A
Synthetic Methodology to Obtain Polycyclic Ethers and Amines. Curr
Org Chem 2009;13:919–938.
28. Denmark SE, Kornfilt DJP, Vogler T. Catalytic Asymmetric
Thiofunctionalization of Unactivated Alkenes.
J Am Chem Soc
2011;133:15308–15311.
29. Akiyama T, Itoh J, Fuchibe K. Recent Progress in Chiral Brønsted Acid
Catalysis. Adv Synth Catal 2006;348:999–1010.
30. Pihko PM. Recent Breakthroughs in Enantioselective Broensted Acid and
Broensted Base Catalysis. ChemInform 2006;37:398–403.
31. Rueping M, Koenigs RM, Atodiresei I. Unifying metal and Brønsted acid
catalysis--concepts, mechanisms, and classifications. Chem Eur
2010;16:9350–9365.
J
32. Schenker S, Zamfir A, Freund M, Tsogoeva SB. Developments in Chiral
Binaphthyl-Derived Brønsted/Lewis Acids and Hydrogen-Bond-Donor
Organocatalysis. Eur J Org Chem 2011;2011:2209–2222.
7. Dowle MD, Davies DI. Synthesis and synthetic utility of halolactones.
Chem Soc Rev 1979;8:171–197.
33. Rueping M, Nachtsheim BJ, Ieawsuwan W, Atodiresei I. Modulating the
Acidity-Highly Acidic Brønsted Acids in Asymmetric Catalysis. Angew
Chem Int Ed 2011;50:6706–6720.
34. Christ P, Lindsay AG, Vormittag SS, Neudörfl J-M, Berkessel A,
O’Donoghue AC. pKa values of chiral Brønsted acid catalysts: phosphoric
acids/amides, sulfonyl/sulfuryl imides, and perfluorinated TADDOLs
(TEFDDOLs). Chem Eur J 2011;17:8524–8528.
35. Klussmann M, Ratjen L, Hoffmann S, Wakchaure V, Goddard R, List B.
Synthesis of TRIP and Analysis of Phosphate Salt Impurities. Synlett
2010;2010:2189–2192.
36. Cheng X, Goddard R, Buth G, List B. Direct Catalytic Asymmetric Three-
Component Kabachnik–Fields Reaction. Angew Chem Int Ed
2008;47:5079–5081.
8. Ranganathan S, Muraleedharan KM, Vaish NK, Jayaraman N. Halo- and
selenolactonisation: the two major strategies for cyclofunctionalisation.
Tetrahedron 2004;60:5273–5308.
9. Gribble GW. The Diversity of Naturally Occurring Organohalogen
Compounds. Chemosphere 2003;52:289.
10. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine
natural products. Nat Prod Rep 2011;28:196.
11. Baskaran S, Islam I, Chandrasekaran S. A general approach to the
synthesis of butanolides: synthesis of the sex pheromone of the Japanese
beetle. J Org Chem 1990;55:891–895.
12. Broka CA, Lin YT. Synthetic studies on thyrsiferol. Elaboration of the
bromotetrahydropyran ring. J Org Chem 1988;53:5876–5885.
37. Amerego WLF, Chai CLL. Purification of Laboratory Chemicals. New
13. Braddock DC, Bhuva R, Millan DS, Pérez-Fuertes Y, Roberts CA,
Sheppard RN, Solanki S, Stokes ESE, White AJP. A biosynthetically-
inspired synthesis of the tetrahydrofuran core of obtusallenes II and IV.
Org Lett 2007;9:445–448.
14. Hennecke U, Müller CH, Fröhlich R. Enantioselective haloetherification
by asymmetric opening of meso-halonium ions. Org Lett 2011;13:
860–863.
15. Denmark SE, Burk MT. Enantioselective Bromocycloetherification by
Lewis Base/Chiral Brønsted Acid Cooperative Catalysis. Org Lett
2012;14:256–259.
York: Butterworth-Heinman; 2003.
38. Chen X-H, Zhang W-Q, Gong L-Z. Asymmetric Organocatalytic Three-
Component 1,3-Dipolar Cycloaddition: Control of Stereochemistry
via
a Chiral Brønsted Acid Activated Dipole. J Am Chem Soc
2008;130:5652–5653.
39. Lu G, Birman VB. Dynamic Kinetic Resolution of Azlactones Catalyzed by
Chiral Brønsted Acids. Org Lett 2010;13:356–358.
40. Cheon CH, Yamamoto H. A Brønsted Acid Catalyst for the Enantioselective
Protonation Reaction. J Am Chem Soc 2008;130:9246–9247.
41. Nakashima D, Yamamoto H. Design of chiral N-triflyl phosphoramide as a
strong chiral Brønsted acid and its application to asymmetric Diels-Alder
reaction. J Am Chem Soc 2006;128:9626–9627.
16. Huang D, Wang H, Xue F, Guan H, Li L, Peng X, Shi Y. Enantioselective
Bromocyclization of Olefins Catalyzed by Chiral Phosphoric Acid. Org
Lett 2011;13:6350–6353.
42. Lacasse M-C, Poulard C, Charette AB. Iodomethylzinc Phosphates:
Powerful Reagents for the Cyclopropanation of Alkenes. J Am Chem Soc
2005;127:12440–12441.
17. Brown RS. Investigation of the early steps in electrophilic bromination
through the study of the reaction with sterically encumbered olefins.
Accounts Chem Res 1997;30:131–137.
Chirality DOI 10.1002/chir