Journal of the American Chemical Society
ARTICLE
of FG and DTE entities in the triad by application of the light
inputs at the particular wavelengths. In addition, each unique
input combination gives a unique output combination, showing
that logical reversibility is achieved.
’ AUTHOR INFORMATION
Corresponding Author
a-son@chalmers.se; uwe.pischel@diq.uhu.es; gust@asu.edu
Encoder and Decoder. An encoder compresses digital in-
formation for transmission or storage, and a decoder recovers the
information in its original form. The FG-DTE system performs
both as a single bit 4-to-2 encoder and 2-to-4 decoder, where
respectively, numbers in base-10 are translated into binary
numbers, and vice versa. This function of the molecule has been
previously described.11 Briefly, the encoder inputs are light at
four different wavelengths, 460, 397, 302, and 366 nm, and the
outputs are absorbance at 475 and 625 nm. When acting as a
decoder, the inputs are light at 397 and 302 nm, and the outputs
are absorbance at 393 and 535 nm, transmittance at 535 nm, and
fluorescence at 624 nm. The initial state for both functions is
FGo-DTEo.
’ ACKNOWLEDGMENT
This work was supported by a grant from the U.S. National
Science Foundation (CHE-0846943), the Swedish Research
Council (grant 622-2010-280), the European Research Council
(grant ERC FP7/2007-2013 No. 203952), the Spanish Ministry
of Science and Innovation (grant CTQ2008-06777-C02-02/
BQU), and the Regional Ministry of Economy, Innovation,
and Science of Andalusia (grant P08-FQM-3685).
’ REFERENCES
(1) de Silva, A. P.; Gunaratne, H. Q. N.; McCoy, C. P. Nature 1993,
364, 42–44.
(2) de Silva, A. P.; Uchiyama, S. Nat. Nanotechnol. 2007, 2, 399–410.
(3) Szacizowski, K. Chem. Rev. 2008, 108, 3481–3548.
(4) Andrꢀeasson, J.; Pischel, U. Chem. Soc. Rev. 2010, 39, 174–188.
(5) Margulies, D.; Melman, G.; Shanzer, A. J. Am. Chem. Soc. 2006,
128, 4865–4871.
(6) Pischel, U. Angew. Chem. Int. Ed. 2007, 46, 4026–4040.
(7) Bozdemir, O. A.; Guliyev, R.; Buyukcakir, O.; Selcuk, S.;
Kolemen, S.; Gulseren, G.; Nalbantoglu, T.; Boyaci, H.; Akkaya, E. U.
J. Am. Chem. Soc. 2010, 132, 8029–8036.
(8) Andrꢀeasson, J.; Straight, S. D.; Bandyopadhyay, S.; Mitchell,
R. H.; Moore, T. A.; Moore, A. L.; Gust, D. Angew. Chem. Int. Ed. 2007,
46, 958–961.
(9) Amelia, M.; Baroncini, M.; Credi, A. Angew. Chem. Int. Ed. 2008,
47, 6240–6243.
(10) Pꢀerez-Inestrosa, E.; Montenegro, J.-M.; Collado, D.; Suau, R.
Chem. Commun. 2008, 1085–1087.
(11) Andrꢀeasson, J.; Straight, S. D.; Moore, T. A.; Moore, A. L.; Gust,
D. J. Am. Chem. Soc. 2008, 130, 11122–11128.
(12) Ceroni, P.; Bergamini, G.; Balzani, V. Angew. Chem. Int. Ed.
2009, 48, 8516–8518.
(13) Margulies, D.; Felder, C. E.; Melman, G.; Shanzer, A. J. Am.
Chem. Soc. 2007, 129, 347–354.
’ CONCLUSIONS
The FG-DTE system of four photonically interconvertible
isomers can thus be operated as any of 13 digital logic devices.
Switching is achieved with light pulses of different wavelengths,
and outputs are either absorbance or fluorescence at certain
wavelengths. The various individual kinds of logic operations
have been described previously, but each operation was realized
in a different molecular system. The FG-DTE molecule unites
and functionally integrates all these logic gates and circuits in a
single molecular platform that can be addressed, read out, and
reset photonically, implying a single initial state FGo-DTEo. The
different responses of the two kinds of chromophores to any
given input wavelength and the ability of the chromophores to
influence one-another’s properties via singlet energy transfer
enable this flexibility of behavior, which is not shared by tran-
sistors or other more traditional logic devices. For example, the
molecule can perform four simple logic functions in response to
the same two inputs, depending upon the readout, and this allows
complex functions such as addition, subtraction and demultiplex-
ing. Some of the discussed functions can be realized in parallel by
reading the optical responses in one absorption spectral scan,
while others are conveniently accessible by reconfiguration
through changing the input wavelength combinations and/or
output reading. The initial state of the system can be reset from
any point of operation by broadband green light irradiation and
the stable recycling of the same operation is guaranteed by the
reported high fatigue resistance of DTE and FG photochromes.11
Although it is unlikely that such molecular devices will soon
replace electronic computers, they could be readily applied in
data storage27,28 and where traditional computers cannot be
used, such as micro-object labeling and tracking,26 programmed
drug release,22 molecular self-regulation and control,60,61 and
related functions in nanotechnology and biomedicine. If molec-
ular computing is realized in the future then the herein reported
system with its unprecedented level of complexity represents a
potential candidate as a highly versatile building block.62
(14) Strack, G.; Ornatska, M.; Pita, M.; Katz, E. J. Am. Chem. Soc.
2008, 130, 4234–4235.
(15) Sun, W.; Zhou, C.; Xu, C.-H.; Fang, C.-J.; Zhang, C.; Li, Z.-X.;
Yan, C.-H. Chem. Eur. J. 2008, 14, 6342–6351.
(16) Suresh, M.; Ghosh, A.; Das, A. Chem. Commun. 2008,
3906–3908.
(17) Andrꢀeasson, J.; Straight, S. D.; Moore, T. A.; Moore, A. L.; Gust,
D. Chem. Eur. J. 2009, 15, 3936–3939.
(18) Dilek, G.; Akkaya, E. U. Tetrahedron Lett. 2000, 41, 3721–3724.
(19) Ferreira, R.; Remꢀon, P.; Pischel, U. J. Phys. Chem. C 2009,
113, 5805–5811.
(20) Credi, A. Angew. Chem. Int. Ed. 2007, 46, 5472–5475.
(21) Magri, D. C.; Brown, G. J.; McClean, G. D.; de Silva, A. P. J. Am.
Chem. Soc. 2006, 128, 4950–4951.
(22) Amir, R. J.; Popkov, M.; Lerner, R. A.; Barbas, C. F., III; Shabat,
D. Angew. Chem. Int. Ed. 2005, 44, 4378–4381.
(23) Ozlem, S.; Akkaya, E. U. J. Am. Chem. Soc. 2009, 131, 48–49.
(24) Konry, T.; Walt, D. R. J. Am. Chem. Soc. 2009, 131,
13232–13233.
(25) Margulies, D.; Hamilton, A. D. J. Am. Chem. Soc. 2009,
131, 9142–9143.
’ ASSOCIATED CONTENT
(26) de Silva, A. P.; James, M. R.; McKinney, B. O. F.; Pears, D. A.;
Weir, S. M. Nat. Mater. 2006, 5, 787–790.
(27) Irie, M. Chem. Rev. 2000, 100, 1685–1716.
(28) K€arnbratt, J.; Hammarson, M.; Li, S.; Anderson, H. L.;
Albinsson, B.; Andrꢀeasson, J. Angew. Chem. Int. Ed. 2010, 49, 1854–1857.
S
Supporting Information.
Structures and absorption
b
spectra of model monomers, isomerization kinetics, and detailed
description of the input conditions. This material is available free
11647
dx.doi.org/10.1021/ja203456h |J. Am. Chem. Soc. 2011, 133, 11641–11648