A R T I C L E S
Alabugin et al.
the aryl-substituted triynes where all triple bonds have similar
properties and, thus, attack at the terminal alkyne moiety should
be possible as well. Here the balance is quite subtle, since phenyl
and p-tolyl groups favor Bu3Sn radical attack at the center alkyne
moiety (Figure 7), whereas the p-OMe-Ph substituted tris-alkyne
11d shows a lack of selectivity.
similar steric interactions depopulate the near-attack conforma-
tion of the reactant.
The experimentally observed “internal” preference (path c
of Scheme 4) for the radical attack in tris-alkynes 11b,c may
be explained by reversibility of the Bu3Sn radical addition to
the triple bond and lack of cyclization pathways with comparable
activation energies for the cyclization of vinyl radicals formed
from the two alternative addition paths a and b (Scheme 4).
Note also that cyclizations of a nonconjugated vinyl radical to
an unsaturated system where breaking of a π-bond leads to the
formation of a carbon-carbon σ-bond are exothermic by 20-30
kcal/mol unless the reacting vinyl radical is deactivated by
benzylic or allylic conjugation.20 Thus, the alternative cyclization
steps should be essentially irreversible under the reaction
conditions, and competition between the alternative cyclization
pathways of each of the isomeric vinyl radicals should be under
kinetic control. In this scenario, the effect of the different
stabilities of isomeric radicals on the selectivity should be
described by the Curtin-Hammett principle. The 5-endo and
4-exo-dig cyclizations of the vinyl radical formed through path
b were shown to have a high barrier because the radical orbital
has to rotate out of conjugation with the aromatic system in
order to attack the in-plane π-bond of the alkyne moiety.
Such loss of benzylic conjugation strongly increases the
cyclization barriers as shown in the earlier computational
work and illustrated by the lack of such cyclizations in the
literature.20,40
Although formation of significant amounts of acyclic products
for R ) OMe is surprising especially in contrast with the
efficient cyclization for R ) Me, the regioselectivity of Bu3Sn
addition to the tris-alkyne 11d offers some insight into the
possible origin of this difference. A possible explanation
(consistent with the results of DFT computations) is that the
p-OMe group provides additional stabilization to the radical at
the benzylic position.39 In agreement with such stabilization,
the attack proceeds at the internal carbon of the triple bond. It
is not clear why we do not observe any cyclization products
from the radical in the above step because both 5-exo-dig and
6-endo-dig closure are usually favorable.26 Since the geometry
of aryl substituted vinyl radicals is not far from linear,26a it is
conceivable that destabilizing steric interactions may occur in
the cyclization transition state due to the presence of an aryl
group at the terminal carbon (Scheme 4). It is also possible that
(22) (a) Schmittel, M.; Strittmatter, M.; Kiau, S. Angew. Chem. 1996, 108,
1952. (b) Schmittel, M.; Kiau, S.; Siebert, T.; Strittmatter, M.
Tetrahedron Lett. 1996, 37, 7691. (c) Schreiner, P. R.; Prall, M. J. Am.
Chem. Soc. 1999, 121, 8615.
(23) (a) Ru: Hoven, G. B.; Efskind, J.; Rømming, C.; Undheim, K. J. Org.
Chem., 2002, 67, 2459. (b) Peters, J.-U.; Blechert, S. Chem. Commun.
1997, 1983. Rh: Kinoshita, H.; Shinokubo, H.; Oshima, K. J. Am.
Chem. Soc, 2003, 125, 7784. (d) Pd: Yamamoto, Y.; Nagata, A,
Nagata, H.; Ando, Y.; Arikawa, Y.; Tatsumi, K.; Itoh, K. Chem.sEur.
J. 2003, 9, 2469. (e) Co: Stara, I. G.; Stary, I.; Kollarovic, A.; Teply,
F.; Saman, D.; Tichy, M. J. Org. Chem. 1998, 63, 4046.
(24) Chang, H.-K.; Datta, S.; Das, A.; Odedra, A.; Liu, R.-S. Angew. Chem.,
Int. Ed. 2007, 46, 4744.
(25) Chang, H.-K.; Liao, Y.-C.; Liu, R.-S. J. Org. Chem. 2007, 72, 8139.
(26) (a) Kovalenko, S. V; Peabody, S; Manoharan, M; Clark, R. J; Alabugin,
I. V. Org. Lett. 2004, 6, 2457. (b) For an earlier report of a 5-exo-dig
radical cyclization of enediynes promoted by nitroxyl radicals, see:
Ko¨nig.; B.; Pitsch, W.; Klein, M.; Vasold, R.; Prall, M. Schreiner,
P. R. J. Org. Chem. 2001, 66, 1742. (c) Schreiner, P.; Prall, M.; Lutz,
V. Angew. Chem., Int. Ed. 2003, 42, 5757.
Computational analysis was carried out (at the UB3LYP/6-
31G**//UB3LYP/3-21G* level of theory41,42) in order to gain
better insight into the nature of the potential energy surface for
the proposed radical cascade mechanism and to distinguish
between mechanistic alternatives (Scheme 4, Figures 11, 13).
The first two 5-exo and 6-exo (Figure 11: A f B, B f C)
cyclizations are predicted to be both fast and essentially
irreversible with the respective activation barriers of ∼3 and 6
kcal/mol and exothermicity of ∼30 kcal/mol. The only mecha-
(39) Such electronic effects on radical reactivity and stability are a topic
of resurging interest:(a) Beeson, T. D.; Mastracchio, A.; Hong, J.-B.;
Ashton, K.; MacMillan, D. W. C Science 2007, 316, 582.
(27) (a) Alabugin, I. V.; Kovalenko, S. V. J. Am. Chem. Soc. 2002, 124,
9052. (b) Alabugin, I. V.; Manoharan, M. J. Am. Chem. Soc. 2003,
125, 4495. (c) For a photochemical transformation of enediynes to
fulvenes and indenes, see also: Ramkumar, D.; Kalpana, M.; Varghese,
B.; Sankararaman, S, Jagadeesh, M. N.; Chandrasekhar, J. J. Org.
Chem. 1996, 61, 2247. (d) See also: Whitlock, H. W.; Sandvick, P. E.;
Overman, L. E.; Reichard, P. B. J. Org. Chem. 1969, 34, 879.
(28) Peabody, S.; Breiner, B.; Kovalenko, S. V.; Patil, S.; Alabugin, I. V.
Org. Biomol. Chem. 2005, 3, 218.
(40) Alabugin, I. V.; Manoharan, M. J. Am. Chem. Soc. 2005, 127, 9534.
(41) B3LYP has been shown to provide reaction barriers which agree well
with the experimental values for a number of radical reaction:(a)
Fischer, H.; Radom, L Angew. Chem., Int. Ed 2001, 40, 1340. (b)
Schreiner, P. R.; Navarro-Vazquez, A.; Prall, M. Acc. Chem. Res. 2005,
38, 29. (c) See also: Hrovat, D. A.; Beno, B. R.; Lange, H.; Yoo,
H.-Y.; Houk, K. N.; Borden, W. T. J. Am. Chem. Soc. 1999, 121,
10529. (d) Saettel, N. J.; Wiest, O.; Singleton, D. A.; Meyer, M. P.
J. Am. Chem. Soc. 2002, 124, 11552. (e) Pickard, F. C.; Shepherd,
R. L.; Gillis, A. E.; Dunn, M. E.; Feldgus, S.; Kirschner, K. N.; Shields,
G C.; Manoharan, M.; Alabugin, I. V. J. Phys. Chem. A 2006, 517.
(f) We have reported previously (refs 20, 40) that computational results
for the related radical cyclizations of alkynes at this level are similar
to those obtained with the higher level BD(T)/cc-pVDZ calculations
(BD(T) ) Brueckner Doubles calculation with a triples contribution).
See also: Prall, M.; Wittkopp, A.; Schreiner, P. R. J. Phys. Chem. A
2001, 105, 9265. (g) Schreiner, P. R.; Navarro-Vazquez, A.; Prall,
M. Acc. Chem. Res. 2005, 38, 29. (h) Crawford, T. D.; Kraka, E.;
Stanton, J. F.; Cremer, D. J. Chem. Phys. 2001, 114, 10638. (i) Cramer,
C. J. J. Am. Chem. Soc. 1998, 120, 6261.
(29) See also: Wudl, F.; Bitler, S. P. J. Am. Chem. Soc. 1986, 108, 4685.
(30) Bowles, D. M.; Palmer, G. J.; Landis, C. A.; Scott, J. L.; Anthony,
J. E. Tetrahedron 2001, 57, 3753.
(31) Scott, J. L.; Parkin, S. R.; Anthony, J. E. Synlett 2004, 161.
(32) Lewis, K. D.; Rowe, M. P.; Matzger, A. J. Tetrahedron 2004, 60,
7191.
(33) Kowalik, J.; Tolbert, L. M. J. Org. Chem. 2001, 66, 3229–3231.
(34) Guo, L.; Bradshaw, J. D.; McConville, D. B.; Tessier, C. A.; Youngs,
W. J. Organometallics 1997, 16, 1685.
(35) (a) Youngs, W. J.; Tessier, C. A.; Bradshaw, J. D. Chem. ReV. 1999,
99, 3153. (b) Malaba, D.; Djebli, A.; Chen, L.; Zarate, E. A.; Tessier,
C. A.; Youngs, W. J. Organometallics 1993, 12, 1266.
(36) Huynh, C.; Linstrumelle, G. Tetrahedron 1988, 44, 6337.
(37) (a) Kaneko, T.; Takahashi, M.; Hirama, M. Tetrahedron Lett. 1999,
40, 2015. (b) Semmelhack, M. F.; Sarpong, R. J. Phys. Org. Chem.
2004, 17, 807. (c) Pickard, F. C.; Shepherd, R. L.; Gillis, A. E.; Dunn,
M. E.; Feldgus, S.; Kirschner, K. N.; Shields, G C.; Manoharan, M.;
Alabugin, I. V. J. Phys. Chem. A 2006, 110, 2517. (d) Zeidan, T.;
Kovalenko, S. V.; Manoharan, M.; Alabugin, I. V. J. Org. Chem. 2006,
71, 962.
(42) (a) This level of theory was shown to provide a good compromise
between accuracy and cost in computational analysis of radical
reactions of alkynes: Ahlstro¨m, B, Kraka, E.; Cremer, D. Chem. Phys.
Lett., 2002, 361, 129. (b) For a detailed comparison of results at the
UB3LYP/6-31G**//UB3LYP/3-21G* level with results of full opti-
mization at the UB3LYP/6-31G** level, see Table S1 in the
Supporting Information.
(43) For a detailed analysis of thermodynamic effects at the activation
barriers in this type of reactions, see:(a) Alabugin, I. V.; Manoharan,
M.; Breiner, B.; Lewis, F. J. Am. Chem. Soc. 2003, 125, 9329.
(38) For another “boomerang” radical cascade involving arylsubstituted
alkynes, see ref 3c.
9
11542 J. AM. CHEM. SOC. VOL. 130, NO. 34, 2008