Organic Letters
Letter
tautomerized into an enediol ligand 1i coordinating to
copper(II). After direct electron transfer, 1d and copper(I)
formed. The oxygen oxidized copper from (I) to (II) valence.
Stoichiometric control experiments (Scheme 3, eq 4 ahd 5)
indicated path A should be dominant. In addition, there was an
equilibrium between 1d and its monohydrate 1c in the system,
which was in favor of 1d. After 1b was added, alkynyl copper
formed. 1j would be generated by the addition of alkynyl copper
to phenylglyoxal. Subsequently, it was oxidized by copper(I)
thiophene-2-carboxylate and oxygen again to produce 1,4-
diphenylbut-3-yne-1,2-dione. Moreover, the dimer’s presence
in the mixture of intermediate was confirmed by X-ray
crystallography.14
With plenty of ynedione 1ab resulting from a gram-scale
reaction (Table 2, 1ab), further synthetic applications were
conducted to furnish various products including 3(2H)-
furanone, pyrazole, quinoxaline, and furanone in good-to-
excellent yields (Scheme 7). These diverse structures illustrate
the versatility of ynedione as synthetic building block.
DEDICATION
■
Dedicated to Professor Lixin Dai on the occasion of his 90th
birthday.
REFERENCES
■
(1) (a) Boersch, C.; Merkul, E.; Muller, T. J. J. Angew. Chem., Int. Ed.
2011, 50, 10448. (b) Merkul, E.; Dohe, J.; Gers, C.; Rominger, F.;
Muller, T. J. J. Angew. Chem., Int. Ed. 2011, 50, 2966. (c) Gers, C.;
Nordmann, J.; Kumru, C.; Frank, W.; Muller, T. J. J. J. Org. Chem. 2014,
̈
̈
̈
79, 3296.
(2) (a) Liu, Y.; Liu, M.; Guo, S.; Tu, H.; Zhou, Y.; Gao, H. Org. Lett.
2006, 8, 3445. (b) Mukherjee, A. K.; Margaretha, P.; Agosta, W. C. J.
Org. Chem. 1996, 61, 3388. (c) Mukherjee, A. K.; Agosta, W. C. J. Chem.
Soc., Chem. Commun. 1994, 1821.
(3) Stephens, R. D.; Castro, C. E. J. Org. Chem. 1963, 28, 3313.
(4) Guo, M.; Li, D.; Zhang, Z. J. Org. Chem. 2003, 68, 10172.
(5) (a) Wang, T.; Jiao, N. Acc. Chem. Res. 2014, 47, 1137. (b) Zhang,
C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464. (c) Shi, Z.; Zhang,
C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381. (d) Li, B.-J.; Shi, Z.-
J. Chem. Soc. Rev. 2012, 41, 5588. (e) Shi, W.; Liu, C.; Lei, A. Chem. Soc.
Rev. 2011, 40, 2761. (f) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev.
2011, 111, 1780. (g) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111,
1215.
Scheme 7. Synthetic Applications
(6) (a) Shao, Z.; Peng, F. Angew. Chem., Int. Ed. 2010, 49, 9566.
(b) Anaya de Parrodi, C.; Walsh, P. J. Angew. Chem., Int. Ed. 2009, 48,
4679.
(7) (a) Ma, Y.; Zhang, S.; Yang, S.; Song, F.; You, J. Angew. Chem., Int.
Ed. 2014, 53, 7870. (b) Ke, J.; He, C.; Liu, H.; Li, M.; Lei, A. Chem.
Commun. 2013, 49, 7549. (c) He, C.; Guo, S.; Ke, J.; Hao, J.; Xu, H.;
Chen, H.; Lei, A. J. Am. Chem. Soc. 2012, 134, 5766. (d) Haro, T. d.;
Nevado, C. J. Am. Chem. Soc. 2010, 132, 1512. (e) Chu, L.; Qing, F.-L. J.
Am. Chem. Soc. 2010, 132, 7262. (f) Gao, Y.; Wang, G.; Chen, L.; Xu, P.;
Zhao, Y.; Zhou, Y.; Han, L.-B. J. Am. Chem. Soc. 2009, 131, 7956.
(8) (a) Glaser, C. Ber. Dtsch. Chem. Ges. 1869, 2, 422. (b) Eglinton, G.;
Galbraith, A. R. J. Chem. Soc. 1959, 889. (c) Hay, A. S. J. Org. Chem.
In conclusion, an efficient copper-catalyzed one-pot synthesis
of ynediones has been developed. The mild conditions showed
great compatibility of various functional groups, offering a
straightforward means to achieve late stage modification of
complex natural product analogues. According to the control
experiments, in situ IR measurements, and isotopic labeling
experiments, a distinct mechanism was proven. Further synthetic
application of ynediones is currently under way in our group,
which will be reported in the future.
1962, 27, 3320. (d) Bohlmann, F.; Schonowsky, H.; Inhoffen, E.; Grau,
̈
G. Chem. Ber. 1964, 97, 794.
(9) (a) Liu, H.; Dong, C.; Zhang, Z.; Wu, P.; Jiang, X. Angew. Chem., Int.
Ed. 2012, 51, 12570. (b) Liu, H.; Jiang, X. Synlett 2013, 24, 1311.
(10) (a) Backvall, J.-E.; Hopkins, R. B.; Grennberg, H.; Mader, M.;
̈
Awasthi, A. K. J. Am. Chem. Soc. 1990, 112, 5160. (b) Volla, C. M. R.;
Backvall, J.-E. Angew. Chem., Int. Ed. 2013, 52, 14209.
̈
(11) (a) Kang, T.; Kim, Y.; Lee, D.; Wang, Z.; Chang, S. J. Am. Chem.
Soc. 2014, 136, 4141. (b) Wencel-Delord, J.; Glorius, F. Nat. Chem.
2013, 23, 369. (c) Lee, E.; Kamlet, A. S.; Powers, D. C.; Neumann, C. N.;
Boursalian, G. B.; Furuya, T.; Choi, D. C.; Hooker, J. M.; Ritter, T.
Science 2011, 334, 639. (d) Wang, D.; Yu, J. J. Am. Chem. Soc. 2011, 133,
5767. (e) Tang, P. P.; Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2010, 132,
12150.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedure, NMR spectra, X-ray data (CIF), and
analytical data. This material is available free of charge via the
(12) (a) Tang, C.; Jiao, N. Angew. Chem., Int. Ed. 2014, 53, 6528.
(b) Liang, Y.-F.; Jiao, N. Angew. Chem., Int. Ed. 2014, 53, 548. (c) Zhang,
C.; Feng, P.; Jiao, N. J. Am. Chem. Soc. 2013, 135, 15257.
́
(13) Marko, I. E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.; Urch, C. J.
AUTHOR INFORMATION
Corresponding Author
■
Science 1996, 274, 2044.
(14) CCDC-1002199 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge from the
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support was provided by NSFC (21272075), NCET
(120178), DFMEC (20130076110023), the Fok Ying Tung
Education Foundation (141011), the Shanghai Pujiang Program
(12PJ1402500), the program for Professor of Special Appoint-
ment (Eastern Scholar) at Shanghai Institutions of Higher
Learning, and the program for the Changjiang Scholar and
Innovative Research Team in University.
D
dx.doi.org/10.1021/ol502298a | Org. Lett. XXXX, XXX, XXX−XXX