Scheme 5 Proposed biosynthetic pathways.
synthetic route for 24. Further synthetic studies along this line
the same conditions: O. R. Sua
M. Melendez-Rodrıguez, E. Aquino-Torres, M. S. Morales-Rı
and P. Joseph-Nathan, Heterocycles, 2007, 71, 1539.
9. (a) S. Ohira, Synth. Commun., 1989, 19, 561; (b) G. J.
´
rez-Castillo, M. Sa
´
nchez-Zavala,
´
´
´
os
are being pursued in this laboratory.
Notes and references
Roth, B. Liepold, S. G. Muller and H. J. Bestmann, Synthesis,
2004, 59.
¨
1. (a) L. Chevolot, A.-M. Chevolot, M. Gajhede, C. Larsen,
U. Anthoni and C. Christophersen, J. Am. Chem. Soc., 1985,
107, 4542; (b) U. Anthoni, L. Chevolot, C. Larsen, P. H. Neilsen
and C. Christophersen, J. Org. Chem., 1987, 52, 4709;
(c) P. H. Neilsen, U. Anthoni and C. Christophersen, Acta. Chem.
Scand., Ser. B, 1988, 42, 489.
2. (a) P. S. Baran, R. A. Shenvi and C. A. Mitsos, Angew. Chem., Int.
Ed., 2005, 44, 3714; (b) P. S. Baran and R. A. Shenvi, J. Am.
Chem. Soc., 2006, 128, 14028.
3. For synthetic studies toward chartelline: (a) X. Lin and
S. M. Weinreb, Tetrahedron Lett., 2001, 42, 2631; (b) C. Sun,
J. E. Camp and S. M. Weinreb, Org. Lett., 2006, 8, 1779;
(c) C. Sun, X. Lin and S. M. Weinreb, J. Org. Chem., 2006, 71,
3159. For synthetic study toward chartellamide: J. L. Pinder and
S. M. Weinreb, Tetrahedron Lett., 2003, 44, 4141.
4. P. J. Black, E. A. Hecker and P. Magnus, Tetrahedron Lett., 2007,
48, 6364.
5. P. Korakas, S. Chaffee, J. B. Shotwell, P. Duque and J. L. Wood,
Proc. Natl. Acad. Sci. USA, 2004, 101, 12054.
6. (a) T. Nishikawa, S. Kajii and M. Isobe, Chem. Lett., 2004, 33,
440; (b) T. Nishikawa, S. Kajii and M. Isobe, Synlett., 2004, 2025;
(c) S. Kajii, T. Nishikawa and M. Isobe, Tetrahedron Lett., 2008,
49, 594.
10. (a) J. W. Tilley and S. Zawoiski, J. Org. Chem., 1988, 53, 386;
(b) A. Ernst, L. Gobbi and A. Vasella, Tetrahedron Lett., 1996, 37,
7959; (c) C.-G. Yang, G. Liu and B. Jiang, J. Org. Chem., 2002,
67, 9392; (d) N. K. Garg, R. Sarpong and B. M. Stoltz, J. Am.
Chem. Soc., 2002, 124, 13179; (e) N. K. Garg, D. D. Capsi and
B. M. Stoltz, J. Am. Chem. Soc., 2005, 127, 5970.
11. (a) K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron
Lett., 1975, 16, 4467; for a recent review, see; (b) R. Chinchilla
´
and C. Najera, Chem. Rev., 2007, 107, 874.
12. This is in contrast to an unsuccessful Sonogashira coupling
between the similar coupling partners reported by Magnus4.
13. I. Hasan, E. R. Marinelli, L. C. Lin, F. W. Fowler and A. B. Levy,
J. Org. Chem., 1981, 46, 157.
14. B. L. Sondengam, G. Charles and T. M. Akam, Tetrahedron Lett.,
1980, 21, 1069.
15. The corresponding (E) isomer of 13 was not detected.
16. The structure of the intermediate 17 was confirmed by transfor-
mation to the corresponding methylester by addition of MeOH.
17. A. Wissner and C. V. Grudzinskas, J. Org. Chem., 1978, 43,
3972.
18. The conditions developed for N-acylation of oxime were employed
for attempted cyclization of 16. See ref. 6c.
19. The stereochemistry of 19 was determined by the NOESY correla-
tions between H-3 and olefinic proton, and H-3 and one of the
gem-methyl groups, as shown in Scheme 4.
7. A. G. Mistry, K. Smith and M. R. Bye, Tetrahedron Lett., 1986,
27, 1051.
8. During preparation of this manuscript, synthesis of 2,6-dibro-
moindole-3-acetic acid methyl ester was reported under essentially
20. For biosynthetic considerations, see refs. 2 and 4.
ꢀc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 3121–3123 | 3123