(+)-Isofebrifugine (1) and (+)-febrifugine (Scheme 1) are
two antimalarial compounds isolated from the roots of the
Scheme 1. Retrosynthesis of (+)-Isofebrifugine (1)
Chinese herbal plant Dichroa febrifuga Lour. and related
hydrangea plants.8 There is renewed interest in these two
alkaloids and their synthetic analogues due to the increasing
resistance of the malarial parasite toward quinine and
synthetic antimalarial drugs such as chloroquine.9 From a
chemical standpoint, these two compounds show an interest-
ing interconversion; it was found that (+)-febrifugine was
converted10a to (+)-1 by heating the former compound in
refluxing aqueous HCl, whereas (+)-1 was converted to (+)-
febrifugine when it was refluxed in methanol10a (or water10b).
On the basis of the ease of conversion of (+)-isofebrifugine
to (+)-febrifugine, we chose the former as our synthetic
target. There have been two racemic11a,b and six asymmetric
syntheses10a,b,11c-f of (+)-1 to date; our approach is funda-
mentally different from those reported.
Figure 1
block 6.
. Representative 3-hydroxypiperidine alkaloids and building
reactions that are carried out on 6 facilitating the stereose-
lective installation of substituents on the bicycle. In connec-
tion with this work, we now report the enantioselective
syntheses of (+)-isofebrifugine (1) and (-)-sedacryptine (2)
starting from 6. The successful syntheses of 1 and 2 highlight
the utility of 6 as a nonracemic building block6 and
demonstrate the flexibility of the approach which provides
ready access to both 2-substituted and 2,6-disubstituted
3-hydroxypiperidine alkaloids.7
(6) (a) Chiral building block approaches: Toyooka, N.; Nemoto, H.
Studies in Natural Products Chemistry: BioactiVe Natural Products (Part
J); Atta-ur-Rahman, Ed.; Elsevier: New York, NY, 2003; Vol. 29, pp 419.
(b) Meyers, A. I.; Brengel, G. P. Tetrahedron 2000, 56, 9843. (c) Husson,
H.-P.; Royer, J. Chem. Soc. ReV. 1999, 28, 383.
The retrosynthesis of (+)-1 is shown in Scheme 1. The
epoxide unit in 7 will serve as an hydroxyethyl carbocation
equivalent to permit its coupling to 4-quinazolinone and
installation of the secondary alcohol unit that is destined to
be a ketone carbonyl function. Compound 7 will be derived
from the alkene 8, which in turn will be prepared from
building block 6.
(7) Review: 3-Piperidinol alkaloid synthesis: (a) Zhou, W.-S.; Lu, Z.-
H.; Xu, Y.-M.; Liao, L.-X.; Wang, Z.-M. Tetrahedron 1999, 55, 11959.
(b) Ciufolini, M. A.; Hermann, C. Y. W.; Dong, Q.; Shimizu, T.;
Swaminathan, S.; Xi, N. Synlett 1998, 105. Recent representative methods:
(c) Andres, J. M.; Pedrosa, R.; Perez-Encabo, A. Eur. J. Org. Chem. 2007,
1803. (d) Lemire, A.; Charette, A. B. Org. Lett. 2005, 7, 2747. (e) Jourdant,
A.; Zhu, J. Heterocycles 2004, 64, 249. (f) Cassidy, M. P.; Padwa, A. Org.
Lett. 2004, 6, 4029. (g) Randl, S.; Blechert, S. Tetrahedron Lett. 2004, 45,
1167. (h) Makabe, H.; Kong, L. K. Org. Lett. 2003, 5, 27. (i) Ma, D.; Ma,
N. Tetrahedron Lett. 2003, 44, 3963. (j) Aoyagi, S.; Kibayashi, C. Org.
Lett. 2003, 5, 3839. (k) Lee, H. K.; Chun, J. S.; Pak, C. S. Tetrahedron
2003, 59, 6445. (l) Singh, R.; Ghosh, S. K. Tetrahedron Lett. 2002, 43,
7711. (m) Dransfield, P. J.; Gore, P. M.; Shipman, M.; Slawin, A. M. Z.
Chem. Commun. 2002, 150. (n) Cossy, J.; Willis, C.; Bellosta, V.;
BouzBouz, S. J. Org. Chem. 2002, 67, 1982. (o) Sengupta, S.; Mondal, S.
Tetrahedron 2002, 58, 7983. (p) Herdeis, C.; Tesler, J. Eur. J. Org. Chem.
1999, 1407, and references cited therein. (q) Toyooka, N.; Yoshida, Y.;
Yotsui, Y.; Momose, T. J. Org. Chem. 1999, 64, 4914.
The synthesis began with the chemoselective reduction5
of the lactone carbonyl in 6 with RedAl to obtain the lactol
9 in 94% yield (Scheme 2). Wittig olefination of 9 followed
by protection of the secondary alcohol as the methoxymethyl
ether gave lactam 10. Reduction of the lactam carbonyl with
(11) (a) Racemic 1: Takeuchi, Y.; Hattori, M.; Abe, H.; Harayama, T.
Synthesis 1999, 1814. (b) Sugiura, M.; Kobayashi, S. Org. Lett. 2001, 3,
477. (+)-1: (c) Huang, P.-Q.; Wei, B.-G.; Ruan, Y.-P. Synlett 2003, 1663.
(d) Takeuchi, Y.; Azuma, K.; Takakura, K.; Abe, H.; Kim, H.-S.; Wataya,
Y.; Harayama, T. Tetrahedron 2001, 57, 1213. (e) Sugiura, M.; Hago, H.;
Hirabayashi, R.; Kobayashi, S. J. Am. Chem. Soc. 2001, 123, 12510. (f)
Kobayashi, S.; Ueno, M.; Suzuki, R.; Ishitani, H.; Kim, H.-S.; Wataya, Y.
J. Org. Chem. 1999, 64, 6833. (-)-1: (g) Katoh, M.; Matsune, R.; Honda,
T. Heterocycles 2006, 67, 189.
(8) (a) Koepfli, J. B.; Mead, J. F.; Brockman, J. A., Jr. J. Am. Chem.
Soc. 1947, 69, 1837. (b) Koepfli, J. B.; Mead, J. F.; Brockman, J. A., Jr.
J. Am. Chem. Soc. 1949, 71, 048. (c) Ablondi, F.; Gordon, S.; Morton, J.,
II; Williams, J. H. J. Org. Chem. 1952, 17, 14.
(9) (a) Kikuchi, H.; Yamamoto, K.; Hiroiwa, S.; Hirai, S.; Kasahara,
R.; Hariguchi, N.; Matsumoto, M.; Oshima, Y. J. Med. Chem. 2006, 49,
4698, and references cited therein. (b) Jiang, S.; Zeng, Q.; Gettayacamin,
M.; Tungtaeng, A.; Wannaying, S.; Lim, A.; Hansukjariya, P.; Okunji, C. O.;
Zhu, S.; Fang, D. Antimicrob. Agents Chemother. 2005, 49, 1169. (c)
Kikuchi, H.; Tasaka, H.; Hirai, S.; Takaya, Y.; Iwabuchi, Y.; Ooi, H.;
Hatakeyama, S.; Kim, H.-S.; Wataya, Y.; Oshima, Y. J. Med. Chem. 2002,
45, 2563.
(12) Gubert, S.; Braojos, C.; Sacristan, A.; Ortiz, J. A. Synthesis 1991,
318.
(13) Hanzlik, R. P.; Hilbert, J. M. J. Org. Chem. 1978, 43, 610.
(14) Majetich, G.; Hicks, R.; Sun, G.-r.; McGill, P. J. Org. Chem. 1998,
63, 2564.
(15) Adolfsson, H.; Coperet, C.; Chiang, J. P.; Yudin, A. K. J. Org.
Chem. 2000, 65, 8651.
(10) (a) Ooi, H.; Urushibara, A.; Esumi, T.; Iwabuchi, Y.; Hatakeyama,
S. Org. Lett. 2001, 3, 953. (b) Takeuchi, Y.; Azuma, K.; Takakura, K.;
Abe, H.; Harayama, T. Chem. Commun. 2000, 1643.
(16) Taniguchi, T.; Ogasawara, K. Org. Lett. 2000, 2, 3193.
(17) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7283.
(18) Hootele, C.; Colau, B.; Halin, F. Tetrahedron Lett. 1980, 21, 5061.
3870
Org. Lett., Vol. 10, No. 17, 2008