S. Cruz-Gregorio et al. / Tetrahedron Letters 52 (2011) 6370–6371
6371
Suryawanshi, S. B.; Gonnade, R. G. Tetrahedron Lett. 2007, 48, 265; (j) Prasad,
K. R.; Chandrakumar, A. J. Org. Chem. 2007, 72, 6312; k Abraham, E.; Candela-
Lena, J. I.; Davies, S. G.; Georgiou, M.; Nicholson, R. L.; Roberts, P. M.; Russell, A.
J.; Sanchez-Fernandez, E. M.; Smith, A. D.; Thomson, J. E. Tetrahedron: Asymmetry
2007, 18, 2510; (l) Yakura, T.; Sato, S.; Yoshimoto, Y. Chem. Pharm. Bull. 2007, 55,
1284; (m) Abraham, E.; Brock, E. A.; Candela-Lena, J. I.; Davies, S. G.; Georgiou,
M.; Nicholson, R. L.; Perkins, J. H.; Roberts, P. M.; Russell, A. J.; Sanchez-
Fernandez, E. M.; Scott, P. M.; Smith, A. D.; Thomson, J. E. Org. Biomol. Chem.
2008, 6, 1665; (n) Passiniemi, M.; Koskinen, A. M. P. Tetrahedron Lett. 2008, 49,
980; (o) Venkatesan, K.; Srinivasan, K. V. Tetrahedron: Asymmetry 2008, 19, 209;
(p) Enders, D.; Terteryan, V.; Palecek, J. Synthesis 2008, 2278; (q) Ichikawa, Y.;
Matsunaga, K.; Masuda, T.; Kotsuki, H.; Nakano, K. Tetrahedron 2008, 64, 11313;
(r) Reddipalli, G. S.; Venkataiah, M.; Mishra, M. K.; Fadnavis, N. W. Tetrahedron:
Asymmetry 2009, 20, 1802; (s) Inuki, S.; Yoshimitsu, Y.; Oishi, S.; Fujii, N.; Ohno,
H. Org. Lett. 2009, 11, 4478; (t) Inuki, S.; Yoshimitsu, Y.; Oishi, S.; Fujii, N.; Ohno,
H. J. Org Chem. 2010, 75, 3831; (u) Yoshimitsu, Y.; Inuki, S.; Oishi, S.; Fujii, N.;
Ohno, H. J. Org. Chem. 2010, 75, 3843; (v) Urano, H.; Enomoto, M.; Kuwahara, S.
Biosci., Biotechnol., Biochem. 2010, 74, 152; (w) Salma, Y.; Ballereau, S.; Maaliki,
C.; Ladeira, S.; Andrieu-Abadie, N.; Genison, Y. Org. Biomol. Chem. 2010, 8, 3227;
(x) Passiniemi, M.; Koskinen, A. M. P. Org. Biomol. Chem. 2011, 9, 1774; (y)
Llaveria, J.; Diaz, Y.; Matheu, M. I.; Castillon, S. Eur. J. Org. Chem. 2011, 1514; (z)
Sanchez-Eleuterio, A.; Quintero, L.; Sartillo-Piscil, F. J. Org. Chem. 2011, 76, 5466;
For a review, see: (aa) Abraham, E.; Davies, S. G.; Roberts, P. M.; Russell, A. J.;
Thomson, J. E. Tetrahedron: Asymmetry 2008, 19, 1027.
Chandrasekhar synthesis of truncated (+)-Jaspine B
O
O
O
OH
5 steps
HO
O
O
O
Wittig
BnO
O
HO
OH
BnO
O
3
2
3 steps
O
O
O
OMe
N3
2 steps
HO
NH2
BnO
N3
BnO
4
Truncated (+)-Jaspine B
Current approach to (-)-Jaspine B
anomeric
deoxygenation
C14H27
O
C14H29
O
C14H27
O
refs.
O
O
BnO
HO
(-)-Jaspine B
BnO
NH2
N3
6
7
O
O
SHOWO
O
O
3. Twenty seven synthesis of Jaspine B and diastereoisomers, and 22 synthesis
involved the use of the Chiral Pool.
4. Chandrasekhar, S.; Tiwari, B.; Prakash, S. J. ARKIVOK 2006, 155.
O
O
O
O
5. For examples of the SHOWO protocol in synthesis: (a) Sartillo-Piscil, F.; Vargas,
M.; Anaya de Parrodi, C.; Quintero, L. Tetrahedron Lett. 2003, 44, 3919; (b) Reddy,
L. V. R.; Swamy, G. N.; Shaw, A. K. Tetrahedron: Asymmetry 2008, 19, 1372; (c)
Ramirez, E.; Meza-Leon, R.; Quintero, L.; Sartillo-Piscil, F. Tetrahedron Lett. 2010,
51, 2178; (d) Sidnei, M.; Ligeour, T. C.; Caroline, L.; Christine, G.; Delphine, J.;
Emanuelle, D.; Francoise, D. Green Chem. 2011, 13, 1812; (e) Venkat, R. P.; Vikas,
B.; Brijesh, K.; Shaw, A. K. Eur. J. Org. Chem. 2011, 1575.
HO
O
BnO
O
1
5
DAG
Scheme 1. Chandrasekhar synthesis of truncated (+)-Jaspine B (12 steps) and
current approach for (À)-Jaspine B.
6. Ewing, G. J.; Robins, M. J. Org. Lett. 1999, 1, 635.
7. A solution of 5 (2.0 g, 5.7 mmol) and periodic acid (1.55 g, 6.8 mol) in 80 mL of dry
ethyl acetate was stirred for 2 h, whereby a solid formed that was separated by
filtration. Evaporation under reduced pressure afforded a colorless syrup, which
was dissolved in 50 mL of THF. This solution was added dropwise to the solution of
phosphorus ylide previously prepared [tridecyltriphenylphosphonium bromide
(3.6 g, 6.84 mmol) in 150 mL of dried THF under an atmosphere of argon, the
mixture was cooled at 0 °C and n-butyllithium was added dropwise (5.13 mL,
8.2 mmol of THF solution 1.6 M); the reaction mixture was stirred for 30 min]. The
resulting reaction mixture was stirred at for 4 h 0 °C. The reaction was stopped by
the addition of 50 mL of water. Extracted with ethyl acetate (3 Â 50 mL), dried the
combined organic phase over Na2SO4 and concentrated under reduced pressure.
The residue was purified by column chromatography to yield 2.18 g of 6 (86%
O
O
O
O
O
BF3 OEt2
O
R'
R'
O
H5IO6
Ph3 CHR'
86%
Et3SiH
84%
BnO
BnO
O
OH
8
6
P
RO
O
1. CF3SO2Cl/DMAP
2. NaN3/TBAF
69% from 8
R' = C12H25
1: R = H
5: R = Bn
BnBr/NaH
98%
reductions of double bond
and azide group,
and debenzylation
in one pot
O
C14H29
O
R'
BnO
yield) as a Z/E mixture (9:1, respectively). [
a]
D = À68.3 (c 1.0, CHCl3), 1H NMR
N3
7
HO
NH2
refs. 2d, 2e, 2g, 4
(400 MHz, CDCl3) d: 0.89 (t, J = 7.2 Hz, 3H), 1.25 (m, 20H), 1.32 (s, 3H), 1.52 (s, 3H),
2.07 (m, 2H), 3.83 (d, J = 2.8 Hz 1H), 4.55 (d, J = 12.0 Hz, 1H), 4.62 (d, J = 3.6 Hz, 1H),
4.64 (d, J = 12.0 Hz, 1H), 4.94 (dd, J = 7.6, 3.2 Hz, 1H), 5.69 (m, 2H), 5.95 (d,
J = 3.6 Hz, 1H), 7.31 (m, 5H). 13C NMR (100 MHz, CDCl3) d: 14.1, 22.6, 23.2, 26.1,
26.2, 26.8, 26.9, 28.0, 29.1, 29.3, 29.4, 29.43, 29.5, 29.6, 31.9, 41.5, 71.9, 75.8, 83.0,
83.3, 104.6, 111.3, 123.4, 127.4, 127.7, 128.3, 135.2, 137.6. HRMS-FAB mode, calcd
for C28H44O4: 444.3240; found 444.3244.
(-)-Jaspine B
Scheme 2. Five-steps formal synthesis of (À)-Jaspine B.
In summary, we have described here, a five-step formal synthe-
sis of (À)-Jaspine B (six-step total synthesis if we used the general
one-pot reduction and deprotection protocol widely reported),
which represents the most concise route to (À)-Jaspine B. Addi-
tionally, in this Letter it has been shown (once again) that the SHO-
WO protocol is an effective and powerful tool in the synthetic
scenario for chain elongation processes.
8. To a solution of 6 (0.5 g, 1.12 mmol) in CH2Cl2 (50 mL) at 0 °C were added trietyl
silane (0.71 mL, 4.48 mmol) and BF3ÁEt2O (0.16 mL, 1.34 mmol). The reaction
mixture was stirred at ambient temperature for 2 h, before to add an aqueous
saturated solution of NaHCO3 (15 mL) and CH2Cl2 (40 mL). The aqueous layer
was extracted with CH2Cl2 (3 Â 50 mL), and the combined organic phase was
dried over Na2SO4 and concentrated under reduced pressure. The resulting
residue was purified by flash chromatography to afford 0.37 g of 8 in (84% yield),
as a white solid, mp = 45 °C; [
a
]
D = À64.2 (c = 1.0, CHCl3) 1H NMR (400 MHz,
CDCl3) d: 0.88 (t, J = 6.8 Hz, 3H), 1.25 (m, 20H), 2.10 (m, 2H), 3.67 (dd, J = 10.0,
1.6 Hz, 1H), 3.78 (dd, J = 4, 1.2 Hz, 1H), 4.20 (dd, J = 10.0, 4.4 Hz, 1H), 4.40 (b, 1H),
4.60 (s, 2H), 4.83 (dd, J = 8.0, 4.0 Hz, 1H), 5.68 (m, 2H), 7.31 (m, 5H). 13C NMR
(100 MHz, CDCl3) d: 14.1, 22.7, 27.9, 29.3, 29.4, 29.5, 29.6, 29.7, 31.9, 72.2, 73.4,
75.8, 75.9, 85.6, 124.5, 127.4, 127.7 128.4, 134.9, 137.9. HRMS-FAB mode, calcd
for C25H40O3: 388.2977; found 388.3010.
Acknowledgment
We thank CONACyT for financial support (Grant number:
62203).
9. Trifluoromethanesulfonyl chloride (0.68 mL, 6.45 mmol) was added dropwise to
a stirred solution of 8 (0.5 g, 1.29 mmol) dissolved in CH2Cl2 (6 mL) at 0 °C. After
10 min, DMAP (0.18 g, 1.5 mmol) was added to the stirred solution at the same
temperature and allowed to react for 24 h. The reaction mixture was
concentrated under reduced pressure and washed successively with hexane
(3 Â 5 mL). The organic layer was concentrated and the residue was dissolved in
DMF (2.5 mL), and NaN3 (0.168 g, 2.58 mmol) and tetrabutylammonium fluoride
1.0 M (1.29 mL, 1.29 mmol) were added. The resulting reaction mixture was
stirred at rt for 24 h. The reaction mixture was concentrated under reduced
pressure and the residue was purified by column chromatography on silica gel
References and notes
1. (a) Kuruda, I.; Musman, M.; Ohtani, I. I.; Ichibata, T.; Tanaka, J.; Gravalos, D. G.;
Higa, T. J. Nat. Prod. 2002, 65, 1505; (b) Ledroit, V.; Debitus, C.; Lavaud, C.;
Massiot, G. Tetrahedron Lett. 2003, 44, 225.
2. (a) Sudhakar, N.; Kumar, A. R.; Prabhakar, A.; Jagadeesh, B.; Rao, B. V. Tetrahedron
Lett. 2005, 46, 325; (b) Bhaket, P.; Morris, K.; Stauffer, C. S.; Datta, A. Org. Lett.
2005, 7, 875; (c) van den Berg, R.; Boltje, T.; Verhagen, C.; Litjens, R.; Vander
Marel, G.; Overkleeft, H. J. Org. Chem. 2006, 71, 836; (d) Du, Y.; Liu, J.; Linhardt, R.
J. J. Org. Chem. 2006, 71, 1251; (e) Liu, J.; Du, Y.; Dong, X.; Meng, S.; Xiao, J.;
Cheng, L. Carbohydr. Res. 2006, 341, 2653; (f) Ribes, C.; Falomir, E.; Carda, M.;
Marco, J. A. Tetrahedron 2006, 62, 5421; (g) Lee, T.; Lee, S.; Kwak, Y. S.; Kim, D.;
Kim, S. Org. Lett. 2007, 9, 429; (h) Reddy, L. V. R.; Reddy, P. V.; Shaw, A. K.
Tetrahedron: Asymmetry 2007, 18, 542; (i) Ramana, C. V.; Giri, A. G.;
to obtain 0.37 g of 7 (69% yield) as a syrup. [
a]
D = À80.1 (c = CHCl3). 1H NMR
(400 MHz, CDCl3) d: 0.88 (t, J = 6.8 Hz, 3H), 1.25 (m, 20H), 2.08 (m, 2H), 3.95 (m,
3H), 4.10 (t, J = 4.8 Hz, 1H), 4.64 (d, J = 12.0 Hz, 1H), 4.69 (d, J = 12.0 Hz, 1H), 4.70
(m, 1H), 5.70 (m, 2H), 7.35 (m, 5H). 13C NMR (100 MHz, CDCl3) d: 14.11, 22.7,
27.8, 29.3, 29.34, 29.5, 29.7, 31.9, 61.6, 68.7, 73.3 75.8, 80.4, 124.9, 127.8, 127.9,
128.4, 135.2, 137.4.