1-3) than with unreactive alkyl halides (Table 2, entries
4-9). Reaction of an unconventional alkyl halide like
MOMCl gave an excellent yield of 2j (Table 2, entry 10).
The reaction with a secondary alkyl halide proceeded well
(Table 2, entry 5) and so did the reactions with acid chloride
and alkyl chloroformate (Table 2, entries 11-12). Reactions
of aryl-substituted allenoates, such as 1b and 1c, worked
nicely (Table 2, entries 13-15). However, the yields for the
reaction of 1d with allyl bromide or propargyl bromide were
modest, perhaps due to the instability of 1d17 (Table 2, entries
16 and 17).
Table 2. Synthesis of R,R-Disubstituted ꢀ-Alkynyl Estersa
The cycloisomerization of 1,n-enynes and 1,n-diynes is
currently a highly competititive field in organic synthetic
chemistry, with numerous applications appearing increasingly
often in the literature.18 Our method is especially suitable
for the synthesis of hitherto inaccessible functionalized 1,n-
enynes and 1,n-diynes (n > 4). For example, 1,5-enynes (2a,
2m, 2o, 2p), 1,6-enynes (2 g, 2n), and 1,5-diynes (2b, 2c,
2q) can be prepared in high yields in a single step.
We have explored the reaction of R,γ-unsubstituted
allenoate (1e) with allyl bromide; in this case, the reaction
could not be stopped to give the monosubstituted product.
Instead, it gave the disubstituted product 2r (eq 1).
Scheme 4 illustrates our proposed mechanism for the
formation of 2r. First, deprotonation of 1e gives alkynyle-
nolate A, which then reacts with allyl bromide to afford 3.
(5) (a) Blagoev, B.; Jordanov, B.; Ivanoff, D. Bull. Soc. Chim. Fr. 1967,
4657–4659. (b) Himbert, G. J. Chem. Res. (S) 1979, 88–89. (c) Petasis,
N. A.; Teets, K. A. J. Am. Chem. Soc. 1992, 114, 10328–10334. (d) Lepore,
S. D.; He, Y.; Damisse, P. J. Org. Chem. 2004, 69, 9171–9175. (e)
Denichoux, A.; Ferreira, F.; Chemla, F. Org. Lett. 2004, 6, 3509–3512.
(6) Xu, B.; Hammond, G. B. Angew. Chem., Int. Ed. 2008, 47, 689–
692.
(7) Diederich, F.; Stang, P.; Tykwinski, R. R. Acetylene chemistry:
chemistry, biology, and material science; Wiley-VCH: Weinheim, 2005, p
59.
(8) Just, Z. W.; Larock, R. C. J. Org. Chem. 2008, 73, 2662–2667.
(9) Lepore, S. D.; He, Y. J. Org. Chem. 2005, 70, 4546–4548.
(10) Nanayakkara, P.; Alper, H. J. Org. Chem. 2004, 69, 4686–4691.
(11) Kende, A. S.; Fludzinski, P.; Hill, J. H. J. Am. Chem. Soc. 1984,
106, 3551–62.
(12) Lin, G.-Y.; Yang, C.-Y.; Liu, R.-S. J. Org. Chem. 2007, 72, 6753–
6757.
(13) Sun, J.; Conley, M. P.; Zhang, L.; Kozmin, S. A. J. Am. Chem.
Soc. 2006, 128, 9705–9710.
(14) For a recent example of alkynyl-substituted cyclization products
from sulfonylallene derivatives by base treatment, see: Kitagaki, S.;
Teramoto, S.; Mukai, C. Org. Lett. 2007, 9, 2549–2552, and references
cited therein.
(15) Lang, R. W.; Hansen, H.-J. Org. Synth., Coll. Vol. 7 1990, 232.
(16) For selected recent papers on allenoates, see:(a) Elsner, P.; Bernardi,
L.; Dela Salla, G.; Overgaard, J.; Jorgensen, K. A. J. Am. Chem. Soc. 2008,
130, 4897–4905. (b) Singh, L.; Ishar, M. P. S.; Elango, M.; Subramaniam,
V.; Gupta, V.; Kanwal, P. J. Org. Chem. 2008, 73, 2224–2233. (c) Shi,
M.; Tang, X.-Y.; Yang, Y.-H. Org. Lett. 2007, 9, 4017–4020. (d) Cowen,
B. J.; Miller, S. J. J. Am. Chem. Soc. 2007, 129, 10988–10989. (e) Li, C.-
Y.; Sun, X.-L.; Jing, Q.; Tang, Y. Chem. Commun. 2006, 2980–2982. (f)
Klein, A.; Miesch, M. Synthesis 2006, 2613–2617.
a Reaction condition: allenoate 1 (0.5 mmol), R4-X (0.75 mmol), LDA
(0.75 mmol). b Yields of isolated compound (LDA ) lithium diisopropyl
amide).
(17) 1d decomposes at room temperature within one day.
(18) For a recent review: Michelet, V.; Toullec, P. Y.; Genet, J.-P.
Angew. Chem., Int. Ed. 2008, 47, 4268-4315 and references cited therein.
Org. Lett., Vol. 10, No. 17, 2008
3715