Organic Letters
Letter
Nat. Chem. 2015, 7, 576−581. (c) Bender, T. A.; Dabrowski, J. A.;
steric hindrance that prevented the hydrosilylation in the first
step of the alkenyl cleavage reaction (Figure 2, red).
́
Zhong, H.; Gagne, M. R. Org. Lett. 2016, 18, 4120−4123. (d) Drosos,
N.; Ozkal, E.; Morandi, B. Synlett 2016, 27, 1760−1764.
(e) Chatterjee, I.; Porwal, D.; Oestreich, M. Angew. Chem., Int. Ed.
2017, 56, 3389−3391. (f) Hazra, C. K.; Gandhamsetty, N.; Park, S.;
Chang, S. Nat. Commun. 2016, 7, 13431. (g) Drosos, N.; Cheng, G. J.;
Ozkal, E.; Cacherat, B.; Thiel, W.; Morandi, B. Angew. Chem., Int. Ed.
2017, 56, 13377−13381.
To conclude, we showed here that an alkenyl group can be
reductively cleaved from alkyl/silyl enol ethers catalytically by
hydrosilanes and catalytic amounts of B(C6F5)3. We suggest
that this cleavage is a result of a B(C6F5)3-catalyzed two-step
reaction, hydrosilylation of the alkenyl group followed by a
silicon-assisted β-elimination of the ROSiEt3. This reactivity
shows that in principle alkenyl−O bonds can be formally
cleaved, and the alkoxy/siloxy group on the CC double
bond can be substituted by a metal-free methodology. Further
studies of this reaction are currently in progress in our group.
́
(7) Bender, T. A.; Payne, P. R.; Gagne, M. R. Nat. Chem. 2017, 10,
85−90.
(8) Chulsky, K.; Dobrovetsky, R. Angew. Chem., Int. Ed. 2017, 56,
4744−4748.
(9) (a) Whitmore, F. C.; Sommer, L. H.; Gold, J.; Van Strien, R. E. J.
Am. Chem. Soc. 1947, 69, 1551−1551. (b) Peterson, D. J. J. Org.
Chem. 1968, 33, 780−784. (c) Hudrlik, P. F.; Hudrlik, A. M.; Misra,
R. N.; Peterson, D.; Withers, G. P.; Kulkarni, A. K. J. Org. Chem. 1980,
45, 4444−4448. (d) Ager, D. J. In Organic Reactions; John Wiley &
Sons, Inc., 2004.
(10) (a) Parks, D. J.; Piers, W. E. J. Am. Chem. Soc. 1996, 118,
9440−9441. (b) Blackwell, J. M.; Foster, K. L.; Beck, V. H.; Piers, W.
E. J. Org. Chem. 1999, 64, 4887−4892. (c) Parks, D. J.; Blackwell, J.
M.; Piers, W. E. J. Org. Chem. 2000, 65, 3090−3098. (d) Rendler, S.;
Oestreich, M. Angew. Chem., Int. Ed. 2008, 47, 5997−6000. (e) Sakata,
K.; Fujimoto, H. J. Org. Chem. 2013, 78, 12505−12512. (f) Houghton,
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Full experimental data, including synthetic procedures,
characterization data, and NMR spectra (PDF)
̈
A. Y.; Hurmalainen, J.; Mansikkamaki, A.; Piers, W. E.; Tuononen, H.
M. Nat. Chem. 2014, 6, 983−988.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(11) Blackwell, J. M.; Morrison, D. J.; Piers, W. E. Tetrahedron 2002,
58, 8247−8254.
(12) (a) Rappoport, Z. In Advances in Physical Organic Chemistry;
Gold, V., Ed.; Academic Press: 1969; Vol. 7, pp 1−114.
(b) Rappoport, Z. Acc. Chem. Res. 1981, 14, 7−15. (c) Rappoport,
Z. Acc. Chem. Res. 1992, 25, 474−479. (d) Bach, R. D.; Baboul, A. G.;
Schlegel, H. B. J. Am. Chem. Soc. 2001, 123, 5787−5793.
(e) Bernasconi, C. F.; Rappoport, Z. Acc. Chem. Res. 2009, 42,
Notes
The authors declare no competing financial interest.
́
993−1003. (f) Fernandez, I.; Bickelhaupt, F. M.; Uggerud, E. J. Org.
ACKNOWLEDGMENTS
We are thankful to the Tel Aviv University for supporting this
research.
Chem. 2013, 78, 8574−8584.
■
(13) (a) Calas, R.; Duffaut, N.; Valade, J. Bull. Soc. Chim. Fr. 1955,
790−792. (b) Komarov, N. V.; Igonina, I. I. Zh. Obshch. Khim. 1967,
37, 2108−2112.
(14) (a) Schraml, J.; Chvalovsky, V.; Magi, M.; Lipmaa, E. Collect.
Czech. Chem. Commun. 1978, 43, 3365−3372. (b) Schraml, J.;
Chvalovsky, V.; Magi, M.; Lippmaa, E. Collect. Czech. Chem. Commun.
1981, 46, 377−390.
(15) (a) Li, Q. S.; Zhang, J.; Zhang, S. Chem. Phys. Lett. 2005, 404,
100−106. (b) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem.
Phys. 2010, 132, 154104. (c) Pantazis, D. A.; Neese, F. Theor. Chem.
Acc. 2012, 131, 1−7.
(16) (a) Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55,
117−129. (b) Cammi, R.; Tomasi, J. J. Comput. Chem. 1995, 16,
1449−1458.
(17) (a) Lambert, J. B.; Zhao, Y. J. Am. Chem. Soc. 1996, 118, 7867−
7868. (b) Lambert, J. B.; Zhao, Y.; Wu, H. J. Org. Chem. 1999, 64,
2729−2736. (c) Lambert, J. B.; Wang, G. T.; Finzel, R. B.; Teramura,
D. H. J. Am. Chem. Soc. 1987, 109, 7838−7845.
(18) Kozuch, S.; Martin, J. M. L. ChemPhysChem 2011, 12, 1413−
1418.
DEDICATION
■
Dedicated to Prof. Doug Stephan on the occasion of his 65th
birthday.
REFERENCES
■
(1) (a) Tobisu, M.; Chatani, N. In Inventing Reactions; Gooßen, L. J.,
Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; pp 35−53.
́
(b) Correa, A.; Leon, T.; Martin, R. J. Am. Chem. Soc. 2014, 136,
́
1062−1069. (c) Alvarez-Bercedo, P.; Martin, R. J. Am. Chem. Soc.
2010, 132, 17352−17353. (d) Tobisu, M.; Morioka, T.; Ohtsuki, A.;
Chatani, N. Chem. Sci. 2015, 6, 3410−3414. (e) Sergeev, A. G.;
Hartwig, J. F. Science 2011, 332, 439−443.
(2) (a) Huber, G. W.; Chheda, J. N.; Barrett, C. J.; Dumesic, J. A.
Science 2005, 308, 1446−1450. (b) Corma, A.; Iborra, S.; Velty, A.
Chem. Rev. 2007, 107, 2411−2502. (c) Zhu, G.; Ouyang, X.; Yang, Y.;
Ruan, T.; Qiu, X. RSC Adv. 2016, 6, 17880−17887. (d) Yakovlev, V.;
Khromova, S.; Sherstyuk, O.; Dundich, V.; Ermakov, D. Y.;
Novopashina, V.; Lebedev, M. Y.; Bulavchenko, O.; Parmon, V.
Catal. Today 2009, 144, 362−366.
(3) (a) Wenkert, E.; Michelotti, E. L.; Swindell, C. S. J. Am. Chem.
Soc. 1979, 101, 2246−2247. (b) Ducoux, J. P.; Le Menez, P.;
Kunesch, N.; Wenkert, E. J. Org. Chem. 1993, 58, 1290−1292.
(4) Shoshani, M. M.; Semeniuchenko, V.; Johnson, S. A. Chem. - Eur.
J. 2018, 24, 14282.
(5) Gevorgyan, V. V.; Rubin, M.; Benson, S.; Liu, J. X.; Yamamoto,
Y. J. Org. Chem. 2000, 65, 6179−6186.
(6) (a) Adduci, L. L.; McLaughlin, M. P.; Bender, T. A.; Becker, J. J.;
́
Gagne, M. R. Angew. Chem., Int. Ed. 2014, 53, 1646−1649.
́
(b) Adduci, L. L.; Bender, T. A.; Dabrowski, J. A.; Gagne, M. R.
D
Org. Lett. XXXX, XXX, XXX−XXX