thiophene ring by reaction with Na2S.17 The resultant
terthiophenes (3TPs, e.g., 13-18) contain more π-electron
density from the thiophene sulfur atom and better electron
delocalization than the diyne linker. Furthermore, the bridg-
ing 1,2-diethynylarene unit limits the rotation of the 3TPs,
ideally coplanarizing the 3TP moiety and thus enhancing
π-orbital overlap further. We report herein the synthesis and
optical properties of DBTAs/DTAs 7-12 and their conver-
sion into 3TPs 13-18 (Figure 2).
Figure 1. Previously prepared DBTAs and DTAs.
and dehydrothienoannulene (DTA, e.g., 6) topologies, with
greater success.15
To further our understanding and scalability of thiophene-
containing macrocycles, we elected to incorporate R-buty-
lated thiophenes as part of the macrocycle (e.g., 7-12) to
improve solubility and, more importantly, to protect the
compounds from unwanted oxidation.11,16 The added stability
conferred by the alkyl chain should also permit us to
investigate the conversion of the diacetylene linker into a
(6) (a) Gobbi, L.; Seiler, P.; Diederich, F. Angew. Chem., Int. Ed. 1999,
38, 674–678. (b) Gobbi, L.; Seiler, P.; Diederich, F.; Gramlich, V. HelV.
Chim. Acta 2000, 83, 1711–1723.
(7) (a) Marsden, J. A.; Palmer, G. J.; Haley, M. M. Eur. J. Org. Chem.
2003, 235, 5–2369. (b) Spitler, E. L.; Johnson, C. A.; Haley, M. M. Chem.
ReV. 2006, 106, 5344–5386.
(8) (a) Jones, C. S.; O’Connor, M. J.; Haley, M. M. In ref 2c, pp
303-385. (b) Zhao, D.; Moore, J. S. Chem. Commun. 2003, n/a, 807–818.
(c) Zhang, W.; Moore, J. S. Angew. Chem., Int. Ed. 2006, 45, 4416–4439.
(9) Recent contributions, inter alia: (a) Marsden, J. A.; Miller, J. J.;
Shirtcliff, L. D.; Haley, M. M. J. Am. Chem. Soc. 2005, 127, 2464–2476.
(b) Marsden, J. A.; Haley, M. M. J. Org. Chem. 2005, 70, 10213–10226.
(c) Johnson, C. A., II; Lu, Y.; Haley, M. M. Org. Lett. 2007, 9, 3725–
3728. (d) Tahara, K.; Johnson, C. A., II; Fujita, T.; Sonoda, M.; De Schryver,
F.; De Feyter, S.; Haley, M. M.; Tobe, Y. Langmuir 2007, 23, 10190–
10197. (e) Spitler, E. L.; Monson, J. M.; Haley, M. M. J. Org. Chem. 2008,
73, 2211–2223.
Figure 2. Target thieno-fused dehydro[14]annulenes 7-12 and
3TPs 13-18.
(10) (a) Varnavski, O.; Ba¨uerle, P.; Goodson, T., III. Opt. Lett. 2007,
32, 3083–3085. (b) Bhaskar, A.; Ramakrishna, G.; Hagedorn, K.; Varnavski,
O.; Mena-Osteritz, E.; Ba¨uerle, P.; Goodson, T., III. J. Phys Chem. B. 2007,
111, 946–954.
As in previous work, the macrocycles were assembled
from basic building blocks, namely core dihaloarenes 19 and
20 and differentially silylated diynes 24 and 26, through a
convergent design. Bromoiodothiophenes 19 and 20 were
prepared according to Scheme 1. Iodination of commercially
available 2-butylthiophene furnished 21. Use of the lithium-
halogen “dance” reaction18 afforded 22 in 42% yield for the
two steps. NBS bromination of 22 provided multigram
quantities of 19 in 36% overall yield. Regioisomer 20 was
easily prepared in an analogous manner: bromination of
2-butylthiophene and subsequent lithium-halogen dance
reaction on 2319 followed by iodine quench generated arene
(11) Handbook of Oligo- and Polythiophenes; Fichou, D., Ed.; Wiley-
VCH: Weinham, 1999. (b) Ba¨uerle, P. Sulfur-Containing Oligomers In
Electronic Materials: The Oligomer Approach; Mu¨llen K., Wegner, G.,
Eds.; Wiley-VCH: Weinheim,; pp 105-231.
(12) (a) Solooki, D.; Bradshaw, J. D.; Tessier, C. A.; Youngs, W. J.
Organometallics 1994, 13, 451–455. (b) Zhang, D.; Tessier, C. A.; Youngs,
W. J. Chem. Mater. 1999, 11, 3050–3057. (c) See also: (ca) Iyoda, M.;
Vorasingha, A.; Kuwatani, Y.; Yoshida, M.; Tetrahedron Lett. 1998, 39,
4701-4704.
(13) (a) Marsella, M. J.; Kim, I. T.; Tham, F. J. Am. Chem. Soc. 2000,
122, 974–975. (b) Marsella, M. J.; Wang, Z.-Q.; Reid, R. J.; Yoon, K. Org.
Lett. 2001, 3, 885–887. (c) Marsella, M. J.; Piao, G.; Tham, F. S. Synthesis
2002, 1133–1135. (d) Marsella, M. J.; Reid, R. J.; Estassi, S.; Wang, L.-S.
J. Am. Chem. Soc. 2002, 124, 12507–12510.
(14) Sarkar, A.; Haley, M. M. Chem. Commun. 2000, 1733–1734.
(15) (a) O’Connor, M. J.; Yelle, R. B.; Zakharov, L. N.; Haley, M. M.
J. Org. Chem. 2008, 73, 4424–4432. (b) O’Connor, M. J., Ph.D. Thesis,
University of Oregon, 2008.
(16) (a) Hotta, S.; Waragi, K. J. Mater. Chem. 1991, 1, 835–842. (b)
Mohanakrishnan, A. K.; Amaladass, P.; Clement, J. A. Tetrahedron Lett.
2007, 48, 779–784. (c) Wakamiya, A.; Daisuke, Y.; Nishinaga, T.; Kitagawa,
T.; Komatsu, K. J. Org. Chem. 2003, 68, 8305–8314. (d) Turbiez, M.; Fre´re,
(17) Kro¨mer, J.; Rios-Carreras, I.; Fuhrmann, G.; Musch, C.; Wunderlin,
M.; Deba¨rdema¨ker, T.; Mena-Osteritz, E.; Ba¨uerle, P. Angew. Chem., Int.
Ed. 2000, 39, 3481–3486.
(18) Schnu¨rch, M. L.; Spina, M.; Khan, A. F.; Mihovilovic, M. D.;
Stanetty, P. Chem. Soc. ReV. 2007, 36, 1046–1057.
P.; Roncali, J. J. Org. Chem. 2003, 68, 5357–5360
.
3974
Org. Lett., Vol. 10, No. 18, 2008