Olefin Ring Closing Metathesis and
Hydrosilylation Reaction in Aqueous Medium by
Grubbs Second Generation Ruthenium Catalyst
Vivek Polshettiwar and Rajender S. Varma*
Sustainable Technology DiVision, National Risk Management
Research Laboratory, U.S. EnVironmental Protection
Agency, MS 443, Cincinnati, Ohio 45268
FIGURE 1. Grubbs second generation ruthenium catalyst.
thesis4 and green chemistry.7 Although there are few protocols
for olefin metathesis reactions in aqueous medium,8-11 surpris-
ingly to the best of our knowledge there is no description of
the hydrosilylation reaction in aqueous medium. Pioneers in this
field, Grubbs et al., prepared water soluble N-heterocyclic-
carbene-based olefin metathesis ruthenium catalyst.9 Although
this work led the way to advance the metathesis reaction in
aqueous medium, the reaction still needs 12-24 h to complete.
Blechert et al. used Grubbs second generation ruthenium catalyst
for the RCM reactions; however, they used a mixture of organic
solvents and water with extended reaction time.10 Recently,
Raines and co-workers reported olefin metathesis in homoge-
neous aqueous medium using second generation Hoveyda-
Grubbs catalyst and claimed it as a green protocol.11 They did
not use pure water as a reaction medium; instead they used
organic solvents with some percentage of water in it and very
often deuterated solvents, which does not justify the protocol
to be truly environmentally friendly. Thus, the majority of the
reported aqueous RCM methods used a mixture of organic
solvent and small amounts of water or expensive and toxic
deuterated solvents, e.g., C6D6, as cosolvents with exotic
ruthenium complexes as catalysts. Consequently, we decided
to develop simple and environmentally benign RCM and
hydrosilylation protocols exclusively in aqueous medium.
Engaged in the development of greener synthetic pathways,12
herein we report an expeditious and benign ring-closing
metathesis in pure aqueous medium (without using any organic
or deuterated solvent) with conventional Grubbs second genera-
tion ruthenium (G-2) catalyst (Figure 1).
ReceiVed June 19, 2008
The Grubbs second generation ruthenium catalyst was shown
to catalyze various olefin ring closing metathesis and
hydrosilylation reactions in aqueous medium. Reactions
proceeded in pure water without any additives or cosolvents,
in a short period of time. We found that inhomogeneity of
the reaction mixture does not prevent high conversion
(70-95%) of the products in both reactions.
The advent of Grubbs catalyst has fueled the widespread
application for various organic transformations, importantly
olefin metathesis1 and very recently hydrosilylation reaction.2
Olefin metatheses, such as ring-closing metathesis (RCM) and
cross-metathesis (CM), are extensively used as a dominant tool
for the carbon-carbon bond forming reaction in the synthesis
of several small molecules,3 biomolecules,4 and macromol-
ecules5 in the drug discovery and polymer industry. Similarly,
the hydrosilylation reaction of alkynes to generate vinylsilanes,
powerful intermediates in organic synthesis,6 is a simple and
widely used protocol.
(6) Ie, Y.; Chatani, N.; Ogo, T.; Marshall, D. R.; Fukuyama, T.; Kakiuchi,
F.; Murai, S. J. Org. Chem. 2000, 65, 1475–1488.
(7) (a) Clavier, H.; Grela, K.; Kirschning, A.; Mauduit, M.; Nolan, S. P.
Angew. Chem., Int. Ed. 2007, 46, 6786–6801. (b) Cornils, B.; Herrmann, W. A.
Aqueous-Phase Organometallic Catalysis, 2nd ed.; Wiley-VCH: Weinheim,
Germany, 2004.
(8) (a) Gułajski, L.; Sledz, P.; Lupa, A.; Grela, K. Green Chem. 2008, 10,
271–274. (b) Gułajski, L.; Michrowska, A.; Naroønik, J.; Kaczmarska, Z.;
Rupnicki, L.; Grela, K. Chem. Sus. Chem. 2008, 1, 103–109. (c) Lipshutz, B. H.;
Ghorai, S.; Aguinaldo, G. T. AdV. Synth. Catal. 2008, 350, 953–956. (d) Lipshutz,
B. H.; Ghorai, S.; Aguinaldo, G. T. Org. Lett. 2008, 10, 1325–1328. (e) Davis,
K. J.; Sinou, D. J. Mol. Catal. A: Chem. 2002, 177, 173–178. (f) Li, C.-J.; Wang,
D.; Chen, D.-L. J. Am. Chem. Soc. 1995, 117, 12867–12868.
(9) Jordon, J. P.; Grubbs, R. H. Angew. Chem., Int. Ed. 2007, 46, 5152–
5155.
Both of these reactions are generally carried out in organic
solvents and their potential utility in aqueous medium is largely
untapped, despite their profound allure for biomolecule syn-
(10) Connon, S. J.; Rivard, M.; Zaja, M.; Blechert, S. AdV. Synth. Catal.
(1) (a) Grubbs, R. H. Angew. Chem., Int. Ed. 2006, 45, 3760–3765. (b) Trnka,
T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18–29.
2003, 345, 572–575.
(11) Binder, J. B.; Blank, J. J.; Raines, R. T. Org. Lett. 2007, 9, 4885–4888.
(12) (a) Polshettiwar, V.; Varma, R. S. Chem. Soc. ReV. 2008, 37, 1546-
1557. (b) Polshettiwar, V.; Varma, R. S. Acc. Chem. Res. 2008, 41, 629–639.
(c) Polshettiwar, V.; Varma, R. S. Curr. Opin. Drug DiscoVery DeV. 2007, 10,
723–737. (d) Polshettiwar, V.; Varma, R. S. J. Org. Chem. 2007, 72, 7420–
7422. (e) Ju, Y.; Kumar, D.; Varma, R. S. J. Org. Chem. 2006, 71, 6697–6700.
(f) Ju, Y.; Varma, R. S. J. Org. Chem. 2006, 71, 135–141. (g) Ju, Y.; Varma,
R. S. Org. Lett. 2005, 7, 2409–2411. (h) Polshettiwar, V.; Varma, R. S.
Tetrahedron 2008, 64, 4637–4643.
(2) (a) Trost, B. M.; Ball, Z.-T. Synthesis 2005, 85, 3–887. (b) Arico, C. S.;
Cox, L. R. Org. Biomol. Chem. 2004, 2, 2558–2562. (c) Maifeld, S. V.; Tran,
M. N.; Lee, D. Tetrahedron Lett. 2005, 46, 105–108.
(3) Grubbs, R. H. Tetrahedron 2004, 60, 7117–7140.
(4) (a) Stymiest, J. L.; Mitchell, B. F.; Wong, S.; Vederas, J. C. J. Org.
Chem. 2005, 70, 7799–7809. (b) Jenkins, C. L.; Vasbinder, M. M.; Miller, S. J.;
Raines, R. T. Org. Lett. 2005, 7, 2619–2622.
(5) Frenzel, U.; Nuyken, O. J. J. Polym. Sci. Part A 2002, 40, 2895–2916.
10.1021/jo801330c CCC: $40.75
Published on Web 08/22/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 7417–7419 7417