B. Lygo et al. / Tetrahedron Letters 44 (2003) 9039–9041
9041
References
1. (a) Davis, B. G. Chem. Rev. 2002, 102, 579–601; (b)
Arsequell, G.; Valencia, G. Tetrahedron: Asymmetry
1999, 10, 3045–3094.
2. Dondoni, A.; Marra, A. Chem. Rev. 2000, 100, 4395–
4421.
3. Schweizer, F. Angew. Chem., Int. Ed. 2002, 41, 230–253.
4. (a) Lygo, B.; Rudd, C. N. Tetrahedron Lett. 1995, 36,
3577–3580; (b) Lygo, B. Synlett 1992, 793–795.
5. (a) Lygo, B.; Swiatyj, M.; Trabsa, H.; Voyle, M. Tetra-
hedron Lett. 1994, 35, 4197–4200; (b) Aloui, M.; Lygo,
B.; Trabsa, H. Synlett 1994, 115–116.
6. Apweiler, R.; Hermjakob, H.; Sharon, N. Biochem. Bio-
phys. Acta 1999, 1473, 4–8.
7. Roth, J. Chem. Rev. 2002, 102, 285–303.
8. Takeda, T.; Sawaki, M.; Ogihara, Y.; Shibata, S. Chem.
Pharm. Bull. 1989, 37, 54–56.
9. See for example: (a) Damkaci, F.; DeShong, P. J. Am.
Chem. Soc. 2003, 125, 4408–4409; (b) Zhang, H.; Wang,
Y.; Thurmer, R.; Al-Qawasmeh, R. A.; Voelter, W. Pol.
J. Chem. 1999, 73, 101–115; (c) Mizuno, M.; Muramoto,
I.; Kobayashi, K.; Yaginuma, H.; Inazu, T. Synthesis
1999, 162–165; (d) Takeda, T.; Kojima, K.; Ogihara, Y.
Carbohydr. Res. 1993, 243, 79–89; (e) Teshima, T.; Naka-
jima, K.; Takahashi, M.; Shiba, T. Tetrahedron Lett.
1992 33, 363–366.
10. See: Spatola, A. In Chemistry and Biochemistry of Amino
Acids, Peptides, and Proteins’; Weinstein, B., Ed.; Marcel
Dekker: New York, 1983; Vol. 7, pp. 267–357.
11. For examples of bioactive peptides incorporating
ketomethylene isosteres, see: (a) Steinmetzer, T.; Zhu, B.
Y.; Konishi, Y. J. Med. Chem. 1999, 42, 3109–3115; (b)
Dragovich, P. S.; Prins, T. J.; Zhou, R.; Fuhrman, S. A.;
Patick, A. K.; Matthews, D. A.; Ford, C. E.; Meador, J.
W.; Ferre, R. A.; Worland, S. T. J. Med. Chem. 1999, 42,
1203–1212 and references cited therein.
Scheme 2. Reagents and conditions: (i) 2-chloromethyl-3-
trimethylsilylpropene (1.2 equiv.), Yb(OTf)3 (10 mol%),
CH2Cl2, rt (12a, 96%, 12b, 87%); (ii) NaI, acetone; (iii) 5,
O-benzyl-N-(9-anthracenylmethyl)dihydrocinchonidinium bro-
mide (10 mol%), 9 M aq. KOH, PhMe, rt; (iv) 15% aq. citric
acid, THF, rt; (v) Boc2O, Et3N, CH2Cl2, 0°C–rt (13a, 55%
overall, 13b, 71% overall); (vi) O3, CDCl3, −50°C; Ph3P, rt (14a,
70%, 14b, 84%); (vii) H2, 10% Pd/C, EtOAc, rt (15a, 77%, 15b,
77%).
via ozonolysis since reaction at the 1,2-disubstituted
alkene should be disfavoured on both steric and electronic
grounds. This did indeed prove to be the case, however
low temperature and carefully-controlled delivery of
ozone were necessary in order to obtain good yields of
the desired products 14. Finally, hydrogenation of the
remaining alkene furnished the target compounds 15a and
15b.
12. For examples of synthetic approaches to N-glycosyl-
asparagines that do allow direct access to ketomethylene
isosteres, see: (a) Westermann, B.; Walter, A.; Flo¨rke, U.;
Altenbach, H.-J. Org. Lett. 2001, 3, 1375–1378; (b)
Werner, R. M.; Williams, L. M.; Davis, J. T.; Tetra-
hedron Lett. 1998, 39, 9135–9138.
This latter sequence of reactions helps to establish the
generality of this approach to C-glycosylasparagines and
demonstrates that good stereoselectivity can be obtained
with a number of different substrates.
13. Jegou, A.; Pacheco, C.; Veyrieres, A. Tetrahedron 1998,
54, 14779–14790.
14. Control experiments employing both achiral and (R)-
selective PTC’s established that the asymmetric alkyla-
tions outlined here proceed with ]90% d.e.
15. (a) Lygo, B.; Andrews, B. I. Tetrahedron Lett. 2003, 44,
4499–4502; (b) Lygo, B.; Andrews, B. I.; Crosby, J.;
Peterson, J. A. Tetrahedron Lett. 2002, 43, 8015–8018; (c)
Lygo, B.; Humphreys, L. D. Tetrahedron Lett. 2002, 43,
6677–6679; (d) Lygo, B.; Crosby, J.; Lowdon, T. R.;
Peterson, J. A.; Wainwright, P. G. Tetrahedron 2001, 57,
2403–2409; (e) Lygo, B.; Crosby, J.; Lowdon, T. R.;
Wainwright, P. G. Tetrahedron 2001, 57, 2391–2402; (f)
Lygo, B.; Crosby, J.; Peterson, J. A. Tetrahedron Lett.
1999, 40, 8671–8674; (g) Lygo, B.; Wainwright, P. G.
Tetrahedron Lett. 1997, 38, 8595–8598.
For all the substrates studied, the stereochemistry of the
C-glycoside bond is readily confirmed by 1H NMR
analysis. ThestereochemistryassignedtoC-2oftheamino
acid moiety is based on the well-established stereochem-
ical course of glycine imine alkylations involving O-benz-
yl-N-(9-anthracenylmethyl)dihydrocinchonidinium bro-
mide.14,15
In conclusion, we have developed a simple, stereoselective
approach to ketomethylene isosteres of N-glycosyl-
asparagines. This chemistry should allow access to a wide
range of novel glycopeptide-based materials and further
developments in this area will be reported in due course.
Acknowledgements
16. Takhi, M.; Abdel Rahman, A. A.-H.; Schmidt, R. R.
Tetrahedron Lett. 2001, 42, 4053–4056.
17. Lygo, B. Phase-Transfer Reactions, In Rodd’s Chemistry
of Carbon Compounds, Vol. V; Asymmetric Catalysis;
Elsevier Science Ltd.: Oxford, 2001; pp. 101–150.
We thank the EPSRC for funding. We would also like
to acknowledge use of the EPSRC’s Chemical Database
Service at Daresbury.