organic compounds
treated as riding atoms in geometrically idealized positions, with
Ê
distances CÐH = 0.95 (aromatic and alkenic), 0.98 (CH3) or 0.99 A
Experimental
A mixture of maleic anhydride (0.826 mmol) and benzylmethylamine
(0.833 mmol) was dissolved in undistilled ethyl acetate (2 ml) and
stirred at room temperature for 1 h. The resulting white solid,
compound (I), was collected by ®ltration and washed with cold ethyl
acetate (yield 10%, m.p. 384 K). IR (KBr, ꢁ, cm 1): 3499, 3359, 2932,
2835, 2785, 2698, 1666, 1583, 1489, 1367, 754, 700; MS (70 eV): m/e
Ê
Ê
(CH2), NÐH = 0.92 A and OÐH = 0.84 A, and with Uiso(H) =
kUeq(carrier), where k = 1.5 for the hydroxyl and methyl groups and
1.2 for all other H atoms.
Data collection: COLLECT (Nonius, 1999); cell re®nement:
DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD
(Duisenberg et al., 2003); program(s) used to solve structure: SIR2004
(Burla et al., 2005); program(s) used to re®ne structure: OSCAIL
(McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular
graphics: PLATON (Spek, 2003); software used to prepare material
for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).
(%) 236 (0.6, M
1), 192 (17), 120 (54), 91 (100). Crystals of (I)
suitable for single-crystal X-ray diffraction were grown by slow
evaporation of a solution in ethyl acetate. The identical product was
obtained in quantitative yield by stirring an equimolar mixture of
maleic acid and benzylmethylamine in ethyl acetate at ambient
temperature.
Â
Â
The authors thank the Servicios Tecnicos de Investigacion
Â
of the Universidad de Jaen and the staff for the data collec-
Crystal data
C8H12N+ÁC4H3O4
3
Ê
V = 1194.13 (15) A
Z = 4
Mr = 237.25
Monoclinic, P21=c
Â
tion. JC thanks the Consejerõa de Innovacion, Ciencia y
Empresa (Junta de Andalucõa, Spain) and the Universidad de
Jaen for ®nancial support. RA and LS thank COLCIENCIAS
and UNIVALLE (Universidad del Valle, Colombia) for
®nancial support. RA also thanks AUIP for supporting a
Â
research trip to Universidad de Jaen.
Â
Mo- Kꢀ radiation
Â
1
Ê
a = 13.1084 (10) A
Ê
b = 5.6177 (2) A
c = 17.6911 (13) A
ꢂ = 113.566 (7)ꢀ
ꢃ = 0.10 mm
T = 120 (2) K
Â
Ê
0.40 Â 0.31 Â 0.15 mm
Data collection
Bruker Nonius KappaCCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
Tmin = 0.969, Tmax = 0.985
28597 measured re¯ections
2748 independent re¯ections
1768 re¯ections with I > 2ꢄ(I)
Rint = 0.055
Supplementary data for this paper are available from the IUCr electronic
archives (Reference: GZ3098). Services for accessing these data are
described at the back of the journal.
Re®nement
R[F2 > 2ꢄ(F2)] = 0.047
wR(F2) = 0.133
S = 1.07
156 parameters
H-atom parameters constrained
References
3
Ê
Beedham, C., Critchley, D. J. & Rance, D. J. (1995). Arch. Biochem. Biophys.
319, 481±490.
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem.
Int. Ed. Engl. 34, 1555±1573.
Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst.
B59, 100±117.
Áꢅmax = 0.23 e A
3
Ê
0.32 e A
2748 re¯ections
Áꢅmin
=
Table 1
Selected geometric parameters (A, ).
ꢀ
Ê
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De
Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38,
381±388.
C21ÐO21A
C21ÐO21B
1.313 (2)
1.219 (2)
C24ÐO24A
C24ÐO24B
1.280 (2)
1.240 (2)
Ï
Ï
Drobez, S., Golic, L. & Leban, I. (1985). Acta Cryst. C41, 1503±1505.
Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000).
J. Appl. Cryst. 33, 893±898.
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003).
J. Appl. Cryst. 36, 220±229.
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography
Centre, Chemistry Department, NUI Galway, Ireland.
Madsen, D. & Larsen, S. (1998). Acta Cryst. C54, 1507±1511.
Ng, S. W., Yip, W.-H., Wang, R.-J. & Mak, T. C. W. (1991). Acta Cryst. C47, 398±
400.
C21ÐC22ÐC23
130.70 (18)
C22ÐC23ÐC24
130.61 (18)
82.1 (2)
C11ÐC17ÐN17ÐC18 172.90 (15)
O21AÐC21ÐC22ÐC23 8.2 (3)
O21BÐC21ÐC22ÐC23 172.5 (2)
C12ÐC11ÐC17ÐN17
O24AÐC24ÐC23ÐC22 17.2 (3)
O24BÐC24ÐC23ÐC22 163.4 (2)
Table 2
Hydrogen-bond geometry (A, ).
ꢀ
Ê
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Â
Rodriguez-Ciria, M., Sanz, A. M., Yunta, M. J. R., Gomez-Contreras, F.,
Navarro, P., Sanchez-Moreno, M., Boutaleb-Charki, S., Osuna, A.,
Â
DÐHÁ Á ÁA
DÐH
HÁ Á ÁA
DÁ Á ÁA
DÐHÁ Á ÁA
CatinÄeiras, A., Pardo, M., Cano, C. & Campayo, L. (2007). Bioorg. Med.
Chem. 15, 2081±2091.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of
O21AÐH21AÁ Á ÁO24A
N17ÐH17CÁ Á ÁO24A
N17ÐH17DÁ Á ÁO24Bi
C17ÐH17AÁ Á ÁO21Aii
0.84
0.92
0.92
0.99
1.63
1.99
1.90
2.52
2.464 (2)
2.882 (2)
2.802 (2)
3.474 (2)
177
164
166
162
È
Gottingen, Germany.
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Gottingen,
È
Germany.
Sivakumar, R., Gnanasam, S. K., Ramachandran, S. & Leonard, J. T. (2002).
Eur. J. Med. Chem. 37, 793±801.
Symmetry codes: (i) x; y 1; z; (ii) x; y 12; z
.
1
2
Spek, A. L. (2003). J. Appl. Cryst. 36, 7±13.
Zhang, P., Zhang, N., Korba, B. E. & Hosmane, R. S. (2005). Bioorg. Med.
Chem. Lett. 15, 5397±5401.
The P21/c space group was uniquely assigned from the systematic
absences. All H atoms were located in difference maps and then
C8H12N+ÁC4H3O4
o587
ꢁ
Acta Cryst. (2007). C63, o585±o587
Santacruz et al.