Con ven ien t Syn th esis of Nu cleosid e Bor a n e Dip h osp h a te
An a logu es: Deoxy- a n d Ribon u cleosid e 5′-P r-Bor a n od ip h osp h a tes
Ping Li and Barbara Ramsay Shaw*
Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
brshaw@chem.duke.edu
Received May 30, 2004
The nucleoside boranophosphates, having one of the nonbridging phosphate oxygens substituted
with a borane (BH3) group, have shown potential therapeutical applications as aptamers, antisense
agents, and antiviral prodrugs. An oxathiaphospholane approach, which does not require exocyclic
amine protection of the nucleobase, has been successfully developed to efficiently synthesize 5′-
PR-boranodiphosphates of 2′-deoxythymidine, adenosine, guanosine, and uridine. The approach
involves a key intermediate, the borane complex of nucleoside 5′-O-1,3,2-oxathiaphospholane 16,
that undergoes a ring-opening reaction catalyzed by 1,4-diazabicyclo[5.4.0]-undec-7-ene to form
the protected nucleoside 5′-PR-boranodiphosphate 18. Treatment of 18 with ammonium hydroxide
yielded diastereoisomeric mixtures of nucleoside 5′-PR-boranodiphosphates 5. This oxathiaphos-
pholane approach ensures the availability of nucleoside 5′-PR-boranodiphosphate analogues needed
for antiviral drug research.
In tr od u ction
Nucleotide analogues with modifications in the base,
sugar, or phosphate residues1,3a,b can be used as probes
for substrate properties, kinetic pathways, and transition
states of enzymes involved in nucleic acid metabolism.2
For example, nucleotide analogues of diphosphates and
triphosphates have been successfully and widely used as
biochemical tools to unravel functions and mechanisms
of nucleoside kinases and polymerases.3 In particular,
phosphorothioate analogues 3 (Figure 1), in which a
sulfur atom is exchanged for a nonbridging oxygen at a
phosphate group, have been well-studied and employed
to determine the stereochemical course of a large number
of enzymatic nucleotidyl and phosphoryl transfer reac-
tions.4
F IGURE 1. Phosphate and its modified analogues.
The substitution of one of the nonbridging oxygens at
a phosphate group by a borane (BH3) group results in a
new class of phosphate-modified nucleotides known as
boranophosphates 2.5 Because the BH3 group is isoelec-
tronic with oxygen, isolobal with sulfur, and isosteric with
the methyl group, the boranophosphate 2 can be consid-
ered as a “hybrid” of three types of modified phosphates,
(4) (a) Eckstein, F. Biochimie 2002, 84, 841. (b) Eckstein, F. Angew.
Chem., Int. Ed. Engl. 1983, 22, 423. (c) Gerlt, J . A.; Coderre, J . A.;
Mehdi, S. Adv. Enzymol. 1983, 55, 291. (d) Eckstein, F.; Romaniuk, P.
J .; Connolly, B. A. Methods Enzymol. 1982, 87, 197. (e) Frey, P. A.;
Richard, J . P.; Ho, H. T.; Brody, R. S.; Sammons, R. D.; Sheu, K. F.
Methods Enzymol. 1982, 87, 213. (f) Webb, M. R. Methods Enzymol.
1982, 87, 301. (g) Buchwald, S. L.; Hansen, D. E.; Hassett, A.; Knowles,
J . R. Methods Enzymol. 1982, 87, 279. (h) Knowles, J . R. Annu. Rev.
Biochem. 1980, 49, 877. (i) Eckstein, F. Acc. Chem. Res. 1979, 12, 204.
(5) (a) Sood, A.; Shaw, B. R.; Spielvogel, B. F. J . Am. Chem. Soc.
1990, 112, 9000. (b) Tomasz, J .; Shaw, B. R.; Porter, K.; Spielvogel, B.
F.; Sood, A. Angew. Chem., Int. Ed. Engl. 1992, 31, 1373. (c) Shaw, B.
R.; Madison, J .; Sood, A.; Spielvogel, B. F. Methods Mol. Biol. 1993,
20, 225. (d) Porter, K. W.; Briley, J . D.; Shaw, B. R. Nucleic Acids Res.
1997, 25, 1611. (e) Krzyzanowska, B. K.; He, K. Z.; Hasan, A.; Shaw,
B. R. Tetrahedron 1998, 54, 5119. (f) He, K. Z.; Hasan, A.; Krzyza-
nowska, B.; Shaw, B. R. J . Org. Chem. 1998, 63, 5769. (g) Shaw, B.
R.; Sergueev, D.; He, K. Z.; Porter, K.; Summers, J . S.; Sergueeva, Z.;
Rait, V. Methods Enzymol. 2000, 313, 226. (h) Shaw, B. R.; Wan, J .;
Wang, X.; Dobrikov, M.; He, K.; Porter, K.; Lin, J . L.; Rait, V.; Sergueev,
D.; Sergueeva, Z. In Chemistry of Nucleic Acid Components; Tocik, Z.,
Hocek, M., Eds; Academy of Sciences of the Czech Republic: Prague,
2002; Vol. 5, p 169. (i) Summers, J . S.; Shaw, B. R. Curr. Med. Chem.
2001, 8, 1147. (j) Shaw, B. R.; Dobrikov, M.; Wang, X.; Wan, J .; He, K.
Z.; Lin, J . L.; Li, P.; Rait, V.; Sergueeva, Z.; Sergueev, D. Ann. N.Y.
Acad. Sci. 2003, 1002, 12.
(1) (a) Nahum, V.; Zundorf, G.; Levesque, S. A.; Beaudoin, A. R.;
Reiser, G.; Fischer, B. J . Med. Chem. 2002, 45, 5384. (b) Dufner, G.;
Schworer, R.; Muller, B.; Schmidt, R. R. Eur. J . Org. Chem. 2000, 1467.
(c) J aneba, Z.; Holy, A. Nucleosides Nucleotides Nucleic Acids 2001,
20, 1103. (d) Izuta, S.; Yoshida, S. Nucleosides Nucleotides 1996, 15,
683. (e) Cramer, J .; Strerath, M.; Marx, A.; Restle, T. J . Biol. Chem.
2002, 277, 43593. (f) Schell, P.; Laux, W. H. G.; Engels, J . W.
Nucleosides Nucleotides 1999, 18, 1169. (g) Cormier, J . F.; Pannunzio,
T. Tetrahedron Lett. 1991, 32, 7161. (h) Bollmark, M.; Zain, R.;
Stawinski, J . Tetrahedron Lett. 1996, 37, 3537. (i) Dabkowski, W.;
Tworowska, I. J . Chem. Soc., Perkin Trans. 1 2001, 2462. (j) Dabkows-
ki, W.; Michalska, M.; Tworowska, I. Chem. Commun. 1998, 427. (k)
Oka, N.; Wada, T.; Saigo, K. J . Am. Chem. Soc. 2003, 125, 8307.
(2) (a) Detmer, K.; Summerer, D.; Marx, A. Eur. J . Org. Chem. 2003,
1837. (b) Washington, M. T.; Wolfle, W. T.; Spratt, T. E.; Prakash, L.;
Prakash, S. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 5113. (c) Park, S.;
Ajtai, K.; Burghardt, T. P. Biochemistry 1997, 36, 3368. (d) Urbatsch,
I. L.; Sankaran, B.; Bhagat, S.; Senior, A. E. J . Biol. Chem. 1995, 270,
26956. (e) Bertrand, R.; Derancourt, J .; Kassab, R. Biochemistry 2000,
39, 14626.
(3) (a) Verma, S.; Eckstein, F. Annu. Rev. Biochem. 1998, 67, 99.
(b) Earnshaw, D. J .; Gait, M. J . Biopolymers 1998, 48, 39. (c) Eckstein,
F. Annu. Rev. Biochem. 1985, 54, 367. (d) Higuchi, H.; Endo, T.; Kaji,
A. Biochemistry 1990, 29, 8747. (e) Noble, S. A.; Fisher, E. F.;
Caruthers, M. H. Nucleic Acids Res. 1984, 12, 3387.
10.1021/jo049094b CCC: $27.50 © 2004 American Chemical Society
Published on Web 09/14/2004
J . Org. Chem. 2004, 69, 7051-7057
7051