Organic Letters
Letter
1
Experimental methods; H and 13C NMR spectra of all
J. V.; Garcia-Raso, A.; Cabello, J. A.; Marinas, J. M. Synthesis 1984,
1984, 502. (c) Varma, S. K.; Kabalka, G. K.; Evans, L. T.; Pagni, P. M.
Synth. Commun. 1985, 15, 279.
(13) (a) Szell, T.; Sohar, I. Can. J. Chem. 1969, 47, 1254. (b) Irie, K.;
Watanabe, K. Bull. Chem. Soc. Jpn. 1980, 53, 1366. (c) Mazza, L.;
Guarna, A. Synthesis 1980, 1980, 41. (d) Ogiwara, Y.; Takahashi, K.;
Kitazawa, F.; Sakai, N. J. Org. Chem. 2015, 80, 3101.
(14) Only a few catalysts are reported as recoverable for chalcone
synthesis, and most of them are difficult to prepare. (a) Zhang, L.;
Wang, A.; Wang, W.; Huang, Y.; Liu, X.; Miao, S.; Liu, J.; Zhang, T.
ACS Catal. 2015, 5, 6563. (b) Yi, W.-B.; Cai, C. J. Fluorine Chem.
2008, 129, 524.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
(15) Guha, S.; Rajeshkumar, V.; Kotha, S. S.; Sekar, G. Org. Lett.
2015, 17, 406.
The authors declare no competing financial interest.
(16) This reaction offers tolerance to the carbomethoxy group
(COOMe) containing benzaldehydes which is only reported with
basic alumina by Pagni et al. (see ref 12c). Methoxy, cyano, and nitro
groups can deactivate the Lewis acid by coordinating with it, and
hence those groups containing benzaldehydes are unsuitable as
substrates in Lewis acid catalyzed reactions [see ref 13d].
(17) All the E- products were confirmed using the coupling constant
J value of the olefinic protons. For details, see the Supporting
(18) Hema, R.; Parthasarathi, V.; Ravikumar, K.; Sridhar, B.;
Pandiarajan, K. Acta Crystallogr., Sect. E: Struct. Rep. Online 2006, 62,
708.
(19) (a) Kalluraya, B.; Chimbalkar, R. M.; Hegde, J. C. Indian J.
Heterocycl. Chem. 2005, 15, 15. (b) Ivanova, Y.; Momekov, G.; Petrov,
O.; Karaivanova, M.; Kalcheva, V. Eur. J. Med. Chem. 2007, 42, 1382.
ACKNOWLEDGMENTS
■
We thank DST, New Delhi (SB/S1/OC-72/2013) for financial
support. I.K. thanks IIT Madras for a fellowship. S.G. thanks
CSIR, New Delhi for the SRF. We thank Ayan Bhattacharya
and Dr. E. Prasad from IIT Madras for the UV−vis experiment.
REFERENCES
■
(1) (a) Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic
Chemistry; University Science Books: Sausalito, CA, 2004; p 162.
(b) Lodish, H.; Berk, A.; Zipursky, S. L.; Matsudaira, P.; Baltimore, D.;
James, D. Molecular Cell Biology; Freeman & Co: New York, 2000.
(c) Steed, W. J.; Atwood, J. L. Supramolecular chemistry; Wiley: United
Kingdom, 2000; p 19.
(2) (a) Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289. (b) Doyle, A.
G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713.
(3) (a) Hassel, O.; Rømming, C. Q. Q. Rev., Chem. Soc. 1962, 16, 1.
(b) Bent, H. A. Chem. Rev. 1968, 68, 587. (c) Weiss, R.; Miess, G. E.;
Haller, A.; Reinhardt, W. Angew. Chem., Int. Ed. Engl. 1986, 25, 103.
(d) Legon, A. C. Angew. Chem., Int. Ed. 1999, 38, 2686.
(21) Zou, W. S.; Han, J.; Jin, W. J. J. Phys. Chem. A 2009, 113, 10125.
(22) 3-Nitrobenzaldehyde has less tendency to be oxidized with
respect to simple benzaldehyde.
(4) (a) Kilah, N. L.; Wise, M. D.; Serpell, C. J.; Thompson, A. L.;
White, N. G.; Christensen, K. E.; Beer, P. D. J. Am. Chem. Soc. 2010,
132, 11893. (b) Jentzsch, A. V.; Emery, D.; Mareda, J.; Metrangolo, P.;
Resnati, G.; Matile, S. Angew. Chem., Int. Ed. 2011, 50, 11675.
(c) Carlsson, A. -C. C.; Graefenstein, J.; Budnjo, A.; Laurila, J. L.;
Bergquist, J.; Karim, A.; Kleinmaier, R.; Brath, U.; Erdelyi, M. J. Am.
Chem. Soc. 2012, 134, 5706. (d) Raatikainen, K.; Rissanen, K. Chem.
Sci. 2012, 3, 1235. (e) Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati,
T.; Priimagi, A.; Resnati, G.; Terraneo, G. Chem. Rev. 2016, 116, 2478.
(5) (a) Schreiner, P. R.; Wittkopp, A. Org. Lett. 2002, 4, 217.
(b) Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 10012.
(6) (a) Metrangolo, P.; Meyer, F.; Pilati, T.; Resnati, G.; Terraneo, G.
Angew. Chem., Int. Ed. 2008, 47, 6114. (b) Fourmigue, M. Curr. Opin.
Solid State Mater. Sci. 2009, 13, 36. (c) Legon, A. C. Phys. Chem. Chem.
Phys. 2010, 12, 7736. (d) Lu, Y.; Wang, Y.; Zhu, W. Phys. Chem. Chem.
Phys. 2010, 12, 4543.
(7) (a) Walter, S. M.; Kniep, F.; Herdtweck, E.; Huber, S. M. Angew.
Chem., Int. Ed. 2011, 50, 7187. (b) Bulfield, D.; Huber, S. M. Chem. -
Eur. J. 2016, 22, 14434.
(8) Jungbauer, S. H.; Walter, S. M.; Schindler, S.; Rout, L.; Kniep, F.;
Huber, S. M. Chem. Commun. 2014, 50, 6281.
(9) (a) Zhang, L.; Luo, Y.; Fan, R.; Wu, J. Green Chem. 2007, 9, 1022.
(b) Tan, J.; Liang, F.; Wang, Y.; Cheng, X.; Liu, Q.; Yuan, H. Org. Lett.
2008, 10, 2485. (c) Abele, E.; Abele, R.; Lukevics, E. J. Chem. Res.,
Synop. 1999, 624. (d) Wu, J.; Sun, W.; Sun, X.; Xia, H.-G. Green Chem.
2006, 8, 365. (e) Huo, C.; Wu, M.; Chen, F.; Jia, X.; Yuan, Y.; Xie, H.
Chem. Commun. 2015, 51, 4708.
(10) (a) Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc.
2002, 124, 2458. (b) Milone, C.; Ingoglia, R.; Schipilliti, L.; Crisafulli,
C.; Neri, G.; Galvagno, S. J. Catal. 2005, 236, 80.
(11) (a) Narender, T.; Reddy, K. P. Tetrahedron Lett. 2007, 48, 3177.
(b) Zhai, L.; Chen, M.; Blom, J.; Theander, T. G.; Christensen, S. B.;
Kharazmi, A. J. Antimicrob. Chemother. 1999, 43, 793.
(12) (a) Micheli, F.; Degiorgis, F.; Feriani, A.; Paio, A.; Pozzan, A.;
Zarantonello, P.; Seneci, P. J. Comb. Chem. 2001, 3, 224. (b) Sinisterra,
D
Org. Lett. XXXX, XXX, XXX−XXX