10.1002/anie.201905533
Angewandte Chemie International Edition
RESEARCH ARTICLE
Asymmetry 1991, 879–880; f) M. J. Wu, C. C. Wu, P.-C. Lee,
Tetrahedron Lett. 1992, 33, 2547–2548; g) M.-J. Wu, J.-Y. Yeh,
Tetrahedron 1994, 50, 1073–1082; h) P. H. Lee, K. Lee, S.-Y. Sung, S.
Chang, J. Org. Chem. 2001, 66, 8646–8649 and references therein; i)
C. E. Davis, B. C. Duffy, R. M. Coates, J. Org. Chem. 2003, 68, 6935–
6943; j) L.-W. Xu, M.-S. Yang, H.-Y. Qiu, G.-Q. Lai, J.-X. Jiang, Synth.
Commun. 2008, 38, 1011–1019; k) J. A. Hilf, M. S. Holzwarth, S. D.
Rychnovsky, J. Org. Chem. 2016, 81, 10376–10382.
rearrangement was irreversible due to the tautomerization of the
productive diene to
a
more stable ketone ester 4aa.
Consequently, the reaction pathway via boat-like transition state
was more favorable for 2R,3S-3aa,[25-26] (for details, see SI). In
contrast, 2S,3S-3aa and 2R,3R-3aa, preferred to proceed
through generally accepted chair-like transition states (2S,3S-
TS-C) and (2R,3R-TS-C) to yield the (R,E)-4aa and (S,E)-4aa
respectively (see Figure S3).
[3]
[4]
a) A. Hosomi, H. Iguchi, M. Endo, H. Sakurai, Chem. Lett. 1979, 8,
977–980; b) D. R. Williams, R. J. Mullins, N. A. Miller, Chem. Commun.
2003, 2220–2221; c) A. M. Dumas, E. Fillion, Org. Lett. 2009, 11,
1919–1922.
Conclusion
a) H. O. House, J. M. Wilkins, J. Org. Chem. 1978, 43, 2443–2454; b) B.
H. Lipshutz, E. L. Ellsworth, S. H. Dimock, R. A. J. Smith, J. Am. Chem.
Soc. 1990, 112, 4404–4410; c) B. H. Lipshutz, C. Hackmann, J. Org.
Chem. 1994, 59, 7437–7444; d) D. R. Williams, W. S. Kissel, J. J. Li,
Tetrahedron Lett. 1998, 39, 8593–8596.
In
summary,
an
efficient
tandem
reaction
asymmetric
of ,-
allylboration/oxy-Cope
rearrangement
unsaturated -ketoesters with allylboronic acids was developed
by using a chiral NiII/N,N-dioxide complex catalyst. This protocol
provided an alternative efficient strategy for formal conjugate
allyl addition to unsaturated compounds. The corresponding
chiral -allyl--ketoester products were obtained in moderate to
good yields with excellent ee values. The intermediates,
allylboration products, could be isolated in good results as well.
In addition, a rare boat-like transition-state model was proposed
to elucidate efficient chiral transfer in the subsequent oxy-Cope
rearrangement based on the experimental investigations and
theoretical calculations. Further studies on the utility of this
method and the reaction mechanism are in progress.
[5]
a) A. Takuwa, Y. Nishigaichi, H. Iwamoto, Chem. Lett. 1991, 20, 1013–
1016; b) I. Shibata, T. Kano, N. Kanazawa, S. Fukuoka, A. Baba,
Angew. Chem. Int. Ed. 2002, 41, 1389–1392; Angew. Chem. 2002, 114,
1447–1450.
[6]
[7]
A. Yanagisawa, S. Habaue, K. Yasue, H. Yamamoto, J. Am. Chem.
Soc. 1994, 116, 6130–6141 and references therein.
a) L. Wang, X. Sun, Y. Zhang, Synth. Commun. 1998, 28, 3263–3267;
b) S. Araki, T. Horie, M. Kato, T. Hirashita, H. Yamamura, M. Kawai,
Tetrahedron Lett. 1999, 40, 2331–2334; c) P. H. Lee, H. Ahn, K. Lee,
S.-Y. Sunga, S. Kimb, Tetrahedron Lett. 2001, 42, 37–39; d) P. H. Lee,
K. Lee, S. Kim, Org. Lett. 2001, 3, 3205–3207; e) P. H. Lee, D.
Seomoon, S. Kim, K. Nagaiah, S. V. Damle, K. Lee, Synthesis 2003,
2003, 2189–2193.
[8]
For examples using other allylic reagents, see: a) T. Ooi, Y. Kondo, K.
Maruoka, Angew. Chem. Int. Ed. 1997, 36, 1183–1185; Angew. Chem.
1997, 109, 1231–1233; b) M. Hojo, H. Harada, H. Ito, A. Hosomi, Chem.
Commun. 1997, 2077–2078; c) H. M. S. Kumar, B. V. S. Reddy, P. T.
Reddy, J. B. Yadav, Tetrahedron Lett. 1999, 40, 5387–5388; d) C.
Schneider, O. Reese, Synthesis 2000, 2000, 1689–1694; e) H. Ito, T.
Nagahara, K. Ishihara, S. Saito, H. Yamamoto, Angew. Chem. Int. Ed.
2004, 43, 994–997; Angew. Chem. 2004, 116, 1012–1015; f) S. K.
Mandal, S. Jana, S. C. Roy, Tetrahedron Lett. 2005, 46, 6115–6117; g)
S. Hanessian, E. Mainetti, F. Lecomte, Org. Lett. 2006, 8, 4047–4049;
h) K.-H. Shen, J.-T. Liu, Y.-R. Wu, C.-F. Yao, Synth. Commun. 2007,
37, 3677–3687; i) M. B. Shaghafi, B. L. Kohn, E. R. Jarvo, Org. Lett.
2008, 10, 4743–4746; j) J. D. Waetzig, E. C. Swift, E. R. Jarvo,
Tetrahedron 2009, 65, 3197–3201; k) L.-M. Zhao, S.-Q. Zhang, F. Dou,
R. Sun, Org. Lett. 2013, 15, 5154–5157; l) D.-F. Li, K. Liu, Y.-X. Jiang,
Y. Gu, J.-R. Zhang, L.-M. Zhao, Org. Lett. 2018, 20, 1122–1125.
M. Shizuka, M. L. Snapper, Angew. Chem. Int. Ed. 2008, 47, 5049–
5051; Angew. Chem. 2008, 120, 5127–5129.
Experimental Section
Ni(OTf)2 (0.01 mmol), L3-RaPr2 (0.01 mmol) and ,-unsaturated--
ketoester 1 (0.10 mmol) were dissolved in 0.5 mL of DCM. The mixture
was stirred at 35 C for 30 min and then cooled to 20 C. Allyl boronic
acid 2 (0.15 mmol) was added and the reaction mixture was stirred at
20 °C for 72 h. Then, the reaction was warmed to 35 C and stirred at
this temperature for another 48 h. The reaction mixture was directly
subjected to column chromatography on silica gel and eluted with
p t ol um th ‒ th l c t t (v/v 8:1) to ffo th co pon ing
product 4.
[9]
Acknowledgements
[10] Y. L. Kuang, X. H. Liu, L. Chang, M. Wang, L. L. Lin, X. M. Feng, Org.
Lett. 2011, 13, 3814–3817.
We appreciate the National Natural Science Foundation of
China (Nos. 21772127 and 21432006) for financial support.
[11] C. Diner, K. J. Szabó, J. Am. Chem. Soc. 2017, 139, 2–14.
[12] For racemic example, see: a) J. D. Sieber, S. Liu, J. P. Morken, J. Am.
Chem. Soc. 2007, 129, 2214–2215; for asymmetric examples, see: b) J.
D. Sieber, J. P. Morken, J. Am. Chem. Soc. 2008, 130, 4978–4983; c) L.
A. Brozek, J. D. Sieber, J. P. Morken, Org. Lett. 2011, 13, 995–997.
[13] a) X. Li, F. Meng, S. Torker, Y. Shi, A. H. Hoveyda, Angew. Chem. Int.
Ed. 2016, 55, 9997–10002; Angew. Chem. 2016, 128, 10151–10156;
for other examples of conjugate allyl addition, see: b) Y. Yanagida, R.
Yazaki, N. Kumagai, M. Shibasaki, Angew. Chem. Int. Ed. 2011, 50,
7910–7914; Angew. Chem. 2011, 123, 8056–8060; c) F. Meng, X. Li, S.
Torker, Y. Shi, X. Shen, A. H. Hoveyda, Nature 2016, 537, 387–393; d)
Y. Huang, S. Torker, X. Li, J. del Pozo, A. H. Hoveyda, Angew. Chem.
Int. Ed. 2019, 58, 2685–2691; Angew. Chem. 2019, 131, 2711–2717.
[14] a) J. L. Y. Chen, H. K. Scott, M. J. Hesse, C. L. Willis, V. K. Aggarwal, J.
Am. Chem. Soc. 2013, 135, 5316–5319; b) M. Hesse, S. Essafi, C.
Keywords: ll l o onic ci • mm t ic c t l i • nic l •
ng m nt • t n m ction
[1]
For selected reviews, see: a) A. Alexakis, J. E. Bäckvall, N. Krause, O.
Pàmies, M. Diéguez, Chem. Rev. 2008, 108, 2796–2823; b) T.
Jerphagnon, M. G. Pizzuti, A. J. Minnaard, B. L. Feringa, Chem. Soc.
Rev. 2009, 38, 1039–1075; c) T. Thaler, P. Knochel, Angew. Chem. Int.
Ed. 2009, 48, 645–648; Angew. Chem. 2009, 121, 655–658.
[2]
a) A. Hosomi, H. Sakurai, J. Am. Chem. Soc. 1977, 99, 1673–1675; b)
G. Majetich, A. Casares, D. Chapman, M. Behnke, J. Org. Chem. 1986,
51, 1745–1753; c) M. Hayashi, T. Mukaiyama, Chem. Lett. 1987, 16,
1719–1722; d) L. F. Tietze, M. Ruther, Chem. Ber. 1990, 123, 1387–
1395; e) Y.-S. Hon, F. L. Chen, Y.-P. Huang, T.-J. Lu, Tetrahedron:
This article is protected by copyright. All rights reserved.