C. G. Boojamra et al. / Bioorg. Med. Chem. Lett. 18 (2008) 1120–1123
1123
Ref. 1.
3. Gallant, J. E.; DeJesus, E.; Arribas, J. R.; Pozniak, A. L.;
Gazzard, B.; Campo, R. E.; Lu, B.; McColl, D.; Chuck,
S.; Enejosa, J.; Toole, J. J.; Cheng, A. K., et al. N. Eng. J.
Med. 2006, 354, 251.
whereas d4AP (2) was 3-fold, and PMPA (1) 4-fold
less active. The loss of activity toward the 6TAMs
mutant was comparable between the fluorinated 4
and non-fluorinated 1 analogs (ꢁ3- to 4-fold), but
slightly improved over PMPA (8.8-fold). No loss of
potency was observed for the natural D analogs to-
ward the M184V RT mutant. Overall the resistance
profile of the fluorinated analog 4 is improved over
both PMPA and d4AP.
4. (a) McColl, D. #393, 7th International Congress on HIV
Drug Therapy, Glasgow, 2004; (b) Johnson, V. A.; Brun-
´
Vezinet, F.; Clotet, B.; Conway, B.; Kuritzkes, D. R.;
Pillay, D.; Schapiro, J. M.; Telenti, A.; Richman, D. Top.
HIV Med. 2005, 13, 125.
For comparison, 20-Fd4A, the nucleoside analog of
phosphonate 4, was tested and found to be approxi-
mately 6-fold more potent against wild-type HIV. Much
of this difference in potency is once again due to the
approximate 5-fold improvement in potency toward
RT inhibition (IC50 = 1.9 lM vs 0.4 lM for the active
metabolites of 4 and 20-Fd4A, respectively).6 In earlier
work from this group, the d4 nucleoside phosphonate
series of analogs, when compared to their d4 nucleoside
counterparts, consistently demonstrate a small loss in
RT inhibition of <10-fold. In this respect, d4 nucleoside
phosphonates are quite good ‘bioisosteres’ of the d4
nucleoside monophosphates. This is also reflected in
the similar resistance profiles between 20-Fd4A and 4
noted in Table 1.
5. (a) Zemlicka, J.; Gasser, R.; Freisler, J. V.; Horwitz, J. P.
J. Am. Chem. Soc. 1972, 94, 3213; (b) Kim, C. U.; Luh, B.
Y.; Martin, J. C. J. Org. Chem. 1991, 56, 2642.
6. Mackman, R. L.; Boojamra, C. G.; Prasad, V.; Zhang, L.;
Lin, K.-Y.; Petrakovsky, O.; Babusis, D.; Chen, J.;
Douglas, J.; Grant, D.; Hui, H. C.; Kim, C. U.; Markev-
itch, D. Y.; Vela, J.; Ray, A.; Cihlar, T. Bioorg. Med.
Chem. Lett. 2007, 17, 6785.
7. (a) Lim, S. E.; Ponamarev, M. V.; Longley, M. J.;
Copeland, W. C. J. Mol. Biol. 2003, 329, 45; (b). Antiviral
Ther. 2005, 10(Suppl. 2); (c) Lewis, W.; Day, B. J.;
Copeland, W. C. Nat. Rev., Drug Disc. 2003, 2, 812; (d)
Lund, K. C.; Wallace, K. B. Cadiovascular Toxicol. 2004,
4, 217; (e) Lewis, W. Antiviral Res. 2003, 58, 189; (f) Lewis,
W.; Kohler, J. J.; Hosseini, S. H.; Haase, C. P.; Copeland,
W. C.; Bienstock, R. J.; Ludaway, T.; McNaught, J.;
Russ, R.; Stuart, T.; Santoianni, R. AIDS 2006, 20, 675;
(g) Johnson, A. A.; Ray, A. S.; Hanes, J.; Suo, Z.;
Colacino, J. M.; Anderson, K. S.; Johnson, K. A. J. Biol.
Chem. 2001, 276, 40847.
8. Cihlar, T.; Ray, A. S.; Boojamra, C. G.; Zhang, L.; Hui,
H.; Laflamme, G.; Vela, J. E.; Grant, D.; Chen, J.;
Myrick, F.; White, K. L.; Gao, Y.; Lin, K.-Y.; Douglas,
J.; Parkin, N.; Carey, A.; Pakdaman, R.; Mackman, R. L.
9. Murakami, E.; Ray, A. S.; Schinazi, R. F.; Anderson, K.
S. Antiviral Res. 2004, 62, 57.
10. Wong-Kai-In, P.; Parkes, K. E. B.; Kinchington, D.;
Galpin, S.; Hope, A. L.; Roberts, N. A.; Martin, J. A.;
Merrett, J. H.; Machin, P.; Thomas, G. Nucleosides
Nucleotides 1991, 10, 401.
11. Tsai, C.-H.; Doong, S.-L.; Johns, D. G.; Driscoll, J. S.;
Cheng, Y.-C. Biochem. Pharmacol. 1994, 48, 1477.
12. (a) Kazimierczuk, Z.; Cottam, H. B.; Revankar, G. R.;
Robins, R. K. J. Am. Chem. Soc. 1984, 106, 6379; (b)
Hanna, N. B.; Ramasamy, K.; Robins, R. K.; Revankar,
G. R. J. Heterocycl. Chem. 1988, 25, 1899.
Initial toxicological studies have yielded promising re-
sults. Compound 4 showed no cytotoxicity to MT-2 cells
up to 1 mM. Perhaps most importantly, compound 4
demonstrated no depletion of mitochondrial DNA from
HepG2 cells when tested at up to 300 lM for 14 days.8
Complete biological and toxicological profiling of this
compound will be published concomitant with this
work.
Compound 4, 20-Fd4AP, is a new nucleoside phospho-
nate derivative with a good resistance profile (no resis-
tance by M184V and K65R, minimal resistance from
6-TAMs) and promising toxicological profile compared
to its non-fluorinated analog d4AP (2) and PMPA (1). A
derivative of
investigation.
4
is currently undergoing clinical
Acknowledgments
13. (a) Tann, C. H.; Brodfuehrer, P. R.; Brundidge, S. P.;
Sapino, C., Jr.; Howell, H. G. J. Org. Chem. 1985, 50,
The authors gratefully acknowledge the assistance of
Dr. Will Watkins and Dr. Steve Krawczyk for useful
chemistry discussions in the development of the method-
ology to make compound 4. C.G.B. would also like to
thank Jackson Soos for his comments on this
manuscript.
`
3644; (b) Hanessian, S.; Vatele, J.-M. Tetrahedron Lett.
1981, 22, 3579.
14. Schaerer, O. D.; Verdine, G. L. J. Am. Chem. Soc. 1995,
117, 10781.
15. (a) Henn, T. F. G.; Garnett, M. C.; Chhabra, S. R.;
Bycroft, B. W.; Baldwin, R. W. J. Med. Chem. 1993, 36,
1570; (b) Rosowsky, A.; Kim, S.-H.; Trites, D.; Wick, M.
J. Med. Chem. 1982, 25, 1034.
16. Jung, M. E.; Toyota, A. J. Org. Chem. 2001, 66, 2624.
17. Lee, K.; Choi, Y.; Gumina, G.; Zhou, W.; Schinazi, R. F.;
Chu, C. K. J. Med. Chem. 2002, 45, 1313.
18. Chambers, D. J.; Evans, G. R.; Fairbanks, A. J. Tetra-
hedron Lett. 2003, 44, 5221.
References and notes
1. (a) Saliba, G.; Yeni, P. Pathol. Biol. 2006, 54, 545; (b)
Schinazi, R. F.; Hernandez-Santiago, B. I.; Hurwitz, S. J.
Antiviral Res. 2006, 71, 322.
19. McCarthy, J. R.; Matthews, D. P.; Barney, C. L.
Tetrahedron Lett. 1990, 31, 973.
20. Freeman, G. A.; Rideout, J. L.; Miller, W. H.; Reardon, J.
E. J. Med. Chem. 1992, 35, 3192.
2. (a) Gilbert, D. N.; Moellering, R. C., Jr.; Eliopoulos, G.
M.; Sande, M. A. The Sanford Guide to Antimicrobial
Therapy, 37th ed.; Antimicrobial Therapy, Inc.: Sperry-
ville, VA, 2007, pp 151–158; (b) Updated HIV treatment