4214
E. Verissimo et al. / Bioorg. Med. Chem. Lett. 18 (2008) 4210–4214
requirement for inhibitors to be recognized by many proteases,36,37
and despite our results being comparable and consistent to others
for peptidomimetic cysteine protease inhibitors reported in the lit-
erature,38 the rigid pyridine moiety chosen here is not a suitable
backbone modification, as structurally comparable unconstrained
peptidyl aldehydes and vinyl sulfones display higher activity.5,12,18
10H, Ar), 6.87 ((dd, J = 6.8 Hz, J = 1.2 Hz, 1H), 6.15 (t, J = 7.2 Hz, 1H), 5.18 (s, 2H),
4.90 (br s, 1H), 3.92 (br s, CHO), 3.16 (m, 2H, CH2). 13C NMR (100 MHz, CDCl3) d
158.1, 153.7, 137.4, 136.4, 129.8, 129.1, 129.0, 128.7, 128.5, 128.3, 127.3, 120.5,
107.1, 67.4, 63.9. MS found [M+Na+CH3OH]+ 431.1577, C23H24N2O523Na
requires 431.1583. Procedure for the synthesis of compound 5b: this product
was prepared in 78% as a yellow oil. The product was purified by flash column
chromatography using 45% EtOAc in hexane as the eluent system. ½a D22
ꢀ184°
ꢁ
(c 0.8, CH2Cl2). mmax (neat)/cmꢀ1 3386, 1732, 1649, 1597, 1564, 1512, 1454,
1381, 1360, 1261, 1199, 1160, 1066. 1H NMR (400 MHz, CDCl3) dH 9.60 (s, 1H,
CHO), 8.08 (d, J = 7.2 Hz, 1H), 7.82 (s, 1H), 7.40–7.14 (m, 10H, Ar), 6.75 (dd,
J = 7.2 Hz, J = 1.6 Hz, 1H), 6.30 (t, J = 7.2 Hz, 1H), 5.21 (s, 2H), 4.75 (dd, J = 9.6 Hz,
J = 4.0 Hz, 1H), 2.70–2.58 (m, 3H), 2.34–2.22 (m, 1H). 13C NMR (100 MHz,
CDCl3) dC 195.7, 157.1, 153.3, 139.7, 135.9, 129.9, 128.7, 128.6,128.4, 128.1,
128.1, 126.6, 120.5, 107.3, 67.4, 67.2, 29.7, 29.4, 30,0. MS found [M+H]+
391.1663, C23H23N2O4 requires 391.1658.
Acknowledgments
The authors thank the Biotechnology and Biological Sciences
Research Council (BBSRC, S.A.W., P.O.N., P.G. Grant BB/C006321/
1) and the FCT (Fundação para a Ciência e Tecnologia in Portugal,
Ph.D. Grant: SFRH/6176/2001), and the National Institute of
Health, Portugal for funding this work.
28. Procedure for the synthesis of peptidomimetic pyridone vinyl ester 6a: Precursor
aldehyde (0.59 mmol) was dissolved in dry tetrahydrofuran (8.7 ml), and
(methoxycarbonylmethylene)–triphenylphosphorane (0.83 mmol) added. The
reaction mixture was refluxed for 1 h then left stirring at room temperature,
overnight. The crude mixture obtained was purified by flash chromatography,
using 40% EtOAc in hexane as the eluent system, affording the pure product as
a viscous yellow oil (91%). mmax (neat)/cmꢀ1 3377, 1728, 1649, 1601, 1512,
1454, 1437, 1389, 1356, 1263, 1198, 1066. 1H NMR (400 MHz, CDCl3) dH 8.02
(d, J = 7.2 Hz, 1H), 7.91 (s, 1H, NH), 7.41–7.10 (m, 10H, Ar), 6.99 (dd, J = 15.6 Hz,
J = 5.2 Hz, 1H, vinyl H), 6.85 (dd, J = 7.2 Hz, J = 2.0 Hz, 1H), 6.29 (t, J = 7.2 Hz,
1H), 5.82 (dd, J = 15.6 Hz, J = 2.0 Hz, 1H, vinyl H), 5.77 (m, 1H), 5.21 (s, 2H),
3.72 (s, 3H), 2.68–2.60 (m, 1H), 2.56–2.49 (m, 1H), 2.29–2.12 (m, 2H). 13C NMR
(100 MHz, CDCl3) dC 166.0, 157.1, 153.4, 145.1, 140.1, 136.0, 129.6, 128.6,
128.3, 128.3, 128.1, 126.4, 125.2, 123.2, 119.5, 107.3, 67.1, 55.8, 51.8, 34.7,
32.0, 30.9. MS found [M+Na]+ 469.1722, C26H26N2O523Na requires 469.1739.
Procedure for the synthesis of peptidomimetic pyridone vinyl phenyl sulfones 6b,c:
References and notes
1. Breman, J. G. Am. J. Trop. Med. Hyg. 2001, 64, 1.
2. Sajid, M.; McKerrow, J. H. Mol. Biochem. Parasitol. 2002, 120, 1.
3. Rosenthal, P. J.; McKerrow, J. H.; Aikawa, M.; Nagasawa, H.; Leech, J. H. J. Clin.
Invest. 1998, 82, 1560.
4. Rosenthal, P. J.; Lee, J. K.; Smith, R. E. J. Clin. Invest. 1993, 91, 1052.
5. Olson, J. E.; Lee, G. K.; Semenov, A.; Rosenthal, P. J. Bioorg. Med. Chem. 1999, 7,
633.
6. Sijwali, P. S.; Koo, J.; Singh, N.; Rosenthal, P. J. Mol. Biochem. Parasitol. 2006, 150,
96.
7. Singh, N.; Sijwali, P. S.; Pandey, K. C.; Rosenthal, P. J. Exp. Parasitol. 2006, 112,
187.
8. Shenai, B. R.; Sijwali, P. S.; Singh, N.; Rosenthal, P. J. J. Biol. Chem. 2000, 275,
29000.
9. Dahl, E. L.; Rosenthal, P. J. Mol. Biochem. Parasitol. 2005, 139, 205.
10. Sijwali, P. S.; Shenai, B. R.; Gut, J.; Singh, N.; Rosenthal, P. J. Biochem. J. 2001,
360, 481.
11. Rosenthal, P. J.; Wollish, W. S.; Palmer, J. T.; Rasnick, D. J. Clin. Invest. 1991, 88,
1467.
12. Rosenthal, P. J.; Olson, J. E.; Lee, G. K.; Palmer, J. T.; Klaus, J. L., et al Antimicrob.
Agents Chemother. 1996, 40, 1600.
13. Hans-Haartwig, O.; Schirmester, T. Chem. Rev. 1997, 97, 133.
14. Powers, J. C.; Asgian, J. L.; Ozlem, D. E.; James, E. K. Chem. Rev. 2002, 102, 4639.
15. Lecaille, F.; Kaleta, J.; Bromme, D. Chem. Rev. 2002, 102, 4459.
16. Lee, B. J.; Singh, N.; Chiang, P.; Kemp, S. J.; Goldman, E. A., et al Antimicrob.
Agents Chemother. 2003, 47, 3810.
17. Cheng, H. J. Org. Chem. 1994, 59, 7671.
18. Shenai, R. B.; Lee, B. J.; Alvarez-Hernandez, A.; Chong, P. Y.; Emal, C. D., et al
Antimicrob. Agents Chemother. 2003, 47, 154.
19. Scheidt, K. A.; Roush, W. R.; McKerrow, J. H.; Selzer, P. M.; Hansell, E., et al
Bioorg. Med. Chem. 1998, 6, 2477.
20. Leung-Tong, R.; Li, W.; Tam, T. F.; Karimian, K. Curr. Med. Chem. 2002, 9, 979.
21. Zhu, S.; Hudson, T. H.; Kyle, D. E.; Lin, A. J. J. Med. Chem. 2002, 45, 3491.
22. Dolle, R. C.; Prouty, C. P.; Cook, E.; Saha, A.; Ross, T. M., et al J. Med. Chem. 1996,
39, 2438.
23. Dragovich, P. S.; Prins, T. J.; Zhou, R.; Brown, E. L.; Maldonado, F. C., et al J. Med.
Chem. 2002, 45, 1607.
25. DeLano, W. L. The PyMOL Molecular Graphics System DeLano Scientific, 2002,
To
a solution of diethyl (phenylsulfonyl)methyl phosphonate previously
prepared (0.30 mmol) in THF (3 ml), at ꢀ10 °C, was added sodium hydride
(0.32 mmol). After gas evolution had ceased (approx. 30 min), a solution of the
aldehyde precursor (0.24 mmol) in THF (3 ml), at 0 °C, was added under
nitrogen and with stirring. The reaction mixture was allowed to warm to 25 °C,
with continuous stirring. After 1 h 30 min the reaction mixture was diluted
with diethyl ether (15 ml) and then poured into brine (10 ml). The layers were
separated, and the organic portion was dried over magnesium sulphate,
filtered, and the filtrate concentrated under reduced pressure. The products
were purified by flash column chromatography, using a 35% EtOAc in hexane
solvent system. Compound 6b was obtained as a pink oil (63%, analysis shown
for the E product): ½a D22
ꢁ
ꢀ32° (c 1.0, CH2Cl2). mmax (neat)/cmꢀ1 3377, 3063,
2925, 1729, 1648, 1599, 1559, 1507, 1447, 1387, 1357, 1306, 1198, 1148, 1086,
1069, 745, 688. 1H NMR (400 MHz, CDCl3) dH 7.86 (m, 2H), 7.73–6.98 (m, 16H),
6.74 (dd, J = 7.2 Hz, J = 1.6 Hz, 1H), 6.18 (dd, J = 15.0 Hz, J = 2.0 Hz, 1H, vinyl),
6.15 (t, J = 7.2 Hz, 1H), 5.90–5.85 (m, 1H), 5.10 (s, 2H), 3.17–3.03 (m, 2H). 13C
NMR (100 MHz, CDCl3) dC 157.1, 153.6, 140.0, 134.0, 133.5, 129.9-127.7,
125.84, 120.0, 107.6, 73.3, 68.4, 67.5, 61.6, 57.6, 53.8, 44.8, 39.6, 32.0, 30.1,
25.7. Found [M+Na]+ 537.1453, C29H26N2O5S23Na requires 537.1460 and
[M+K]+ 553.1220, C29H26N2O5S39
K requires 553.1200. Compound 6c was
obtained as a colorless oil (98%, analysis shown for the E/Z product mixture):
½
a 2D2
ꢁ
ꢀ137° (c 0.3, CH2Cl2). mmax (neat)/cmꢀ1 3375, 1728, 1649, 1604, 1512,
1504, 1446, 1358, 1308, 1252, 1199, 1145, 1084, 902., 872. 1H NMR (400 MHz,
CDCl3) dH 8.05–7.01 (m), 6.66 (dd, J = 7.2 Hz, J = 2.0 Hz), 6.36 (dd0, J = 6.8 Hz,
J = 2.0 Hz), 6.19 (t, J = 7.2 Hz), 6.12 (t0, J = 6.8 Hz), 5.73 (dd0, J = 10.8 Hz, J =
5.2 Hz), 5.55 (t, J = 8.4 Hz), 5.21 (s, 2H), 5.20 (s0, 2H), 3.83 (d, J = 8.4 Hz, 2H),
3.66 (m, 2H), 3.48 (dd0, J = 14.4 Hz, J = 10.8 Hz), 3.05 (s), 2.80–2.72 (m), 2.67 (t,
J = 8.4 Hz, 2H), 2.43 (t0, J = 7.6 Hz, 2H). 13C NMR (100 MHz, CDCl3)dC 156.3,
155.8, 153.3, 153.2, 149.3, 146.7, 139.8, 139.7, 138.6, 138.6, 135.9, 135.8, 134.1,
133.9, 133.6, 129.5, 129.3, 128.6, 128.5, 128.3, 128.2, 128.1, 127.3, 126.4, 120.2,
120.1, 116.9, 114.7, 106.5, 106.5, 67.1, 55.3, 55.1, 44.4, 36.1, 32.4, 32.40, 31.6,
30.6, 25.3. Found [M+H]+ 551.1601, C30H28N2SO5 23Na requires 551.1617.
29. Dragovich, P. S.; Webber, S. E.; Binford, S. L.; Babine, R. E.; Lee, B. J., et al J. Med.
Chem. 1998, 41, 2806.
26. Warner, P.; Green, R. C.; Gomes, B.; Strimpler, A. M. J. Med. Chem. 1994, 37,
3090.
27. Procedure for the synthesis of peptidomimetic pyridone aldehydes 5a,b: DMSO
(3.02 mmol) was added to a solution of oxalyl chloride (1.81 mmol) in DCM
(0.55 ml) at ꢀ78 °C, and stirred for 5 min. The alcohol (1.01 mmol) dissolved in
DCM (15 ml) was then added, and the mixture was stirred for 15 min still at
ꢀ78 °C, after which triethylamine (7.05 mmol) was added. The reaction
mixture was allowed to warm up to 0 °C and kept at that temperature until
TLC analysis indicated consumption of the starting material. The reaction
mixture was then diluted with water, washed with brine and saturated aq
NaHCO3. The organic layer was dried over MgSO4, evaporated and purified by
flash column chromatography. Procedure for the synthesis of compound 5a: This
product was prepared in 72% as a clear yellow oil. The product was purified by
flash column chromatography using 45% EtOAc in hexane as the eluent system.
30. Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405.
31. Enders, D.; Von Berg, S.; Jendeleit, B. Org. Synt. 1995, 78, 169.
32. Carretero, J. C.; Demillequand, M.; Ghosez, L. Tetrahedron 1987, 43, 5125.
33. Trager, W.; Jensen, J. B. Science 1976, 193.
34. Desjardins, R. E.; Canfield, C. J.; Haynes, J. D.; Chulay, J. D. Antimicrob. Agents
Chemother. 1979, 16, 710.
35. Sijwali, P. S.; Kato, K.; Seydel, K. B.; Gut, J.; Lehman, J., et al Proc. Natl. Acad. Sci.
U.S.A. 2004, 8721.
36. Leung, D.; Abbenante, G.; Fairlie, D. P. J. Med. Chem. 2000, 43, 305.
37. Salituro, F. G.; Baker, C. T.; Court, J. J.; Deininger, D. D.; Kim, E. E., et al Bioorg.
Med. Chem. Lett. 1998, 8, 3637.
½
a 2D2
ꢁ
ꢀ55° (c 0.4, CH2Cl2).
1560, 1512, 1454, 1381, 1359, 1260, 1199, 1163, 1071, 1029, 917, 744, 699. 1
NMR (400 MHz, CDCl3) dH 7.98 (d, J = 6.4 Hz, 1H), 7.89 (s, 1H), 7.40–7.10 (m,
m
max (neat)/cmꢀ1 3374, 3030, 2924, 1730, 1646, 1594,
38. Ettari, R.; Nizi, E.; Di Francesco, M. E.; Dude, M. A.; Pradel, G., et al J. Med. Chem.
2008, 51, 996.
H