(R)-3-((R)-3-Oxo-1,3-diphenylpropyl)-tetrahydropyran-4-one
(7r).10 81% yield; syn/anti = 97 : 3 (by 1H NMR); 1H NMR
(400 MHz, CDCl3) δ (ppm) 2.45–2.59 (m, 1H), 2.69–2.85
(m, 2H), 3.28–3.50 (m, 3H), 3.54–3.66 (m, 1H), 3.82–4.03
(m, 3H), 7.10–7.35 (m, 4H), 7.38–7.49 (m, 2H), 7.48–7.54
(m, 1H), 7.87 (d, 2H, J = 6.4 Hz); 13C NMR (75 MHz, CDCl3)
δ (ppm) 38.77, 42.40, 43.80, 57.15, 68.89, 71.16, 125.58,
127.05, 128.06, 128.21, 128.51, 128.78, 132.99, 136.92, 141.15,
198.04, 209.05. HPLC analysis: Chiralpak AD-H column,
i-PrOH–hexane 15 : 85, flow rate 0.7 mL min−1, λ = 254 nm,
retention time: 24.58 min (minor) and 27.30 min (major),
88% ee.
Acknowledgements
This work was financially supported by the Ph.D. Programs
Foundation of Ministry and Education of China (no.
20090031110019) and National Basic Research Program of
China (973 Program) (no. 2010CB833300). We also thank the
Nankai University State Key Laboratory of Elemento-Organic
Chemistry for support.
Notes and references
1 For books, see: P. Perlmutter, Conjugate Addition Reactions in Organic
Synthesis, Pergamon, Oxford, 1992.
2 For reviews, see: (a) S. Sulzer-Mosse and A. Alexakis, Chem. Commun.,
2007, 3123; (b) E. R. Jarvo and S. J. Miller, Tetrahedron, 2002, 58,
2481; (c) D. Enders, C. Wang and J. X. Liebich, Chem.–Eur. J., 2009,
15, 11058.
(S)-2-((R)-3-Oxo-1,3-diphenylpropyl)-cyclopentanone (7s).16
90% yield; syn/anti = 80 : 20 (by 1H NMR), 1H NMR
(400 MHz, CDCl3) δ (ppm) 1.51–1.60 (m, 1H), 1.65–1.75
(m, 1H), 1.87–1.90 (m, 2H), 2.06 (dd, 1H, J1 = 9.0 Hz, J2 =
18.6 Hz), 2.21–2.27 (m, 1H), 2.46 (dd, 1H, J1 = 8.7 Hz, J2 =
17.1 Hz), 3.36 (dd, 1H, J1 = 7.5 Hz, J2 = 16.8 Hz), 3.70 (dd,
1H, J1 = 7.5 Hz, J2 = 14.4 Hz), 3.87 (dd, 1H, J1 = 6.3 Hz, J2 =
16.5 Hz), 7.17–7.29 (m, 5H), 7.42 (t, 2H, J = 7.5 Hz), 7.53
(t, 1H, J = 7.2 Hz), 7.91 (d, 2H, J = 7.2 Hz); 13C NMR
(75 MHz, CDCl3) δ (ppm) 20.30, 27.94, 38.89, 40.83, 42.92,
52.95, 126.67, 128.09, 128.32, 128.44, 128.55, 132.99, 137.05,
142.51, 198.72, 220.09. HPLC analysis: Chiralpak AD-H
column, i-PrOH–hexane 50 : 50, flow rate 1.0 mL min−1, λ =
254 nm, retention time: 7.21 min (minor) and 9.67 min (major),
60% ee.
3 For selected examples of 1,3-dicarbonyls as Michael doners, see:
(a) H. Li, J. Song, X. Liu and L. Deng, J. Am. Chem. Soc., 2005, 127,
8948; (b) J. Wang, H. Li, L. Zu, W. Duan and W. Wang, J. Am. Chem.
Soc., 2006, 128, 12652; (c) H. Li, Y. Wang, L. Tang, F. Wu, X. Liu,
C. Guo, B. M. Foxman and L. Deng, Angew. Chem., 2005, 117, 107;
(d) H. Li, Y. Wang, L. Tang and L. Deng, J. Am. Chem. Soc., 2004, 126,
9906; (e) T. Okino, Y. Hoashi, T. Furukawa, X. Xu and Y. Takemoto,
J. Am. Chem. Soc., 2005, 127, 119; (f) Y. Takemoto, Org. Biomol.
Chem., 2005, 3, 4299; (g) T. Okino, Y. Hoashi and Y. Takemoto, J. Am.
Chem. Soc., 2003, 125, 12672; (h) F. Peng, Z. Shao, B. Fan, H. Song,
G. Li and H. Zhang, J. Org. Chem., 2008, 73, 5202; (i) J. Wang, H. Li,
W.-H. Duan, L.-S. Zu and W. Wang, Org. Lett., 2005, 7, 4713;
( j) Y. Hoashi, T. Okino and Y. Takemoto, Angew. Chem., 2005, 117,
4100; Y. Hoashi, T. Okino and Y. Takemoto, Angew. Chem., Int. Ed.,
2005, 44, 4032; (k) S. H. McCooey and S. J. Connon, Angew. Chem.,
2005, 117, 6525; S. H. McCooey and S. J. Connon, Angew. Chem., Int.
Ed., 2005, 44, 6367; (l) X. Jiang, Y. Zhang, X. Liu, G. Zhang, L. Lai,
L. Wu, J. Zhang and R. Wang, J. Org. Chem., 2009, 74, 5562.
4 For selected examples of nitroalkanes as Michael donors, see:
(a) A. Prieto, N. Halland and K. A. Jøgensen, Org. Lett., 2005, 7, 3897;
(b) B. Vakulya, S. Varga, A. Csampai and T. Soö, Org. Lett., 2005, 7,
1967; (c) B. Vakulya, S. Varga and T. Soós, J. Org. Chem., 2008, 73,
3475; (d) N. Halland, R. G. Hazell and K. A. Jøgensen, J. Org. Chem.,
2002, 67, 8331; (e) E. J. Corey and F.-Y. Zhang, Org. Lett., 2000, 2,
4257; (f) S. Hanessian and V. Pham, Org. Lett., 2000, 2, 2975;
(g) M. Yamaguchi, T. Shiraishi and M. Hirama, J. Org. Chem., 1996, 61,
3520.
5 For selected examples of dicyanomethane as Michael donors, see:
(a) P. Kotrusz, S. Toma, H.-G. Schmalz and A. Adler, Eur. J. Org.
Chem., 2004, 1577; (b) T. Kakinuma, R. Chiba and T. Oriyama, Chem.
Lett., 2008, 37, 1204; (c) A. Russo, A. Capobianco, A. Perftto,
A. Lattanzi and A. Peluso, Eur. J. Org. Chem., 2011, 1922;
(d) N. Nikishkin, J. Huskens and W. Verboom, Eur. J. Org. Chem., 2010,
6820; (e) A. Russo, A. Perfetto and A. Lattanzi, Adv. Synth. Catal., 2009,
351, 3067; (f) S. V. Pansare and R. Lingampally, Org. Biomol. Chem.,
2009, 7, 319; (g) H. Naka, N. Kanase, M. Ueno and Y. Kondo,
Chem.–Eur. J., 2008, 14, 5267; (h) X.-F. Li, L.-F. Cun, C.-X. Lian,
L. Zhong, Y.-C. Chen, J. Liao, J. Zhu and J.-G. Deng, Org. Biomol.
Chem., 2008, 6, 349.
6 For selected examples of nitroalkenes as Michael acceptors, see:
(a) W. Wang, J. Wang and H. Li, Angew. Chem., 2005, 117, 1393;
W. Wang, J. Wang and H. Li, Angew. Chem., Int. Ed., 2005, 44, 1369;
(b) T. Ishii, S. Fiujioka, Y. Sekiguchi and H. Kotsuki, J. Am. Chem. Soc.,
2004, 126, 9558; (c) A. Sato, M. Yoshida and S. Hara, Chem. Commun.,
2008, 6242; (d) Y. Hayashi, H. Gotoh, T. Hayashi and M. Shoji, Angew.
Chem., 2005, 117, 4284; Y. Hayashi, H. Gotoh, T. Hayashi and M. Shoji,
Angew. Chem., Int. Ed., 2005, 44, 4212; (e) B. M. Nugent, R. A. Yoder
and J. N. Johnson, J. Am. Chem. Soc., 2004, 126, 3418; (f) N. Mase,
R. Thayumanavan, F. Tanaka and C. F. Barbas III, Org. Lett., 2004, 6,
2527; (g) E. Reyes, J. L. Vicario, D. Badia and L. Carrillo, Org. Lett.,
2006, 8, 6135; (h) M. Rueping, A. Parra, U. Uria, F. Besselièvre and
E. Merino, Org. Lett., 2010, 12, 5680; (i) Z.-L. Zheng, B. L. Perkins and
B. Ni, J. Am. Chem. Soc., 2011, 133, 50; ( j) J.-F. Wang, C. Qi, Z.-M. Ge,
T.-M. Cheng and R.-T. Li, Chem. Commun., 2010, 46, 2124; (k) D.-F. Lu,
Y.-F. Gong and W.-Z. Wang, Adv. Synth. Catal., 2010, 352, 644.
Typical procedure for Michael reaction of 4-hydroxy coumarin
to benzylideneacetone
To a stirring solution of catalyst 2 (11 mg, 0.04 mmol) in CHCl3
(0.5 mL), benzylideneacetone 9 (22 mg, 0.15 mmol) was added
followed by 4-hydroxy coumarin 8 (16 mg, 0.1 mmol). The
mixture was stirred vigorously and monitored by TLC. When
the reaction was finished, the solvent was evaporated and the
crude product was purified by flash silica gel chromatography
(petroleum ether–EtOAc = 2 : 1) to afford the desired product 10
as a white solid.
1
Warfarin (10).17b 99% yield; H NMR (400 MHz, CDCl3) δ
(ppm) 1.69 (s, 1.58H), 1.73 (s, 1.73H), 2.03 (dd, 0.89H, J1 =
22.3 Hz, J2 = 10.8 Hz), 2.31 (s, 0.39 H), 2.49 (dt, 1.63 H, J1 =
21.2 Hz, J2 = 14.2 Hz, J3 = 5.1 Hz), 3.34 (d, 0.61, J = 16.5 Hz),
3.88 (dd, 0.17H, J1 = 19.4 Hz, J2 = 10.1 Hz), 4.16 (m, 0.77 H),
4.31 (m, 0.52 H), 4.73 (d, 0.14 H, J = 8.0 Hz), 7.18–7.40
(m, 7H), 7.51 (t, 0.68H, J = 7.7 Hz), 7.59 (t, 0.55H, J = 7.4 Hz),
7.83 (d, 0.56H, J = 8.2 Hz), 7.92 (d, 0.46H, J = 7.8 Hz), 7.96
(d, 0.16H, J = 8.1 Hz); 13C NMR (75 MHz, CDCl3) δ (ppm)
27.72, 28.20, 30.10, 34.20, 34.85, 35.35, 40.00, 42.55, 45.17,
99.01, 100.53, 101.15, 104.19, 115.56, 115.89, 116.21, 116.52,
116.67, 122.73, 123.08, 123.64, 123.96, 126.51, 126.98, 127.05,
127.23, 127.99, 128.19, 128.64, 129.24, 131.57, 132.04, 141.45,
143.22, 152.90, 152.99, 158.82, 159.71, 161.33, 162.19. HPLC
analysis: Chiralpak AD-H column, i-PrOH–hexane 20 : 80, flow
rate 1.0 mL min−1, λ = 254 nm, retention time: 5.27 min (major)
and 13.67 min (minor), 34% ee.
3728 | Org. Biomol. Chem., 2012, 10, 3721–3729
This journal is © The Royal Society of Chemistry 2012