in CHCl3). Elemental analysis for C34H33NO8S (615.692): Calcd.
C, 66.33; H, 5.40; N, 2.27. Found: C, 66.14; H, 5.46; N, 2.28%.
1H NMR (300 MHz, CDCl3), d (ppm) = 7.99–7.06 (m, 19 H,
aromatics), 5.55 (d, 1 H, J4–3 = 6.0 Hz, H-4), 5.05 (s, 2 H, N-
OCH2Ph), 4.72 (dd, 1 H, J2–3 = 6.3 Hz, J2–1 = 2.8 Hz, H-2), 4.65
and 4.48 (AB system, 2 H, J = 11.5 Hz, Dm = 50.9 Hz, PhCH2O),
4.29 (m, 1 H, H-1), 4.09 (dd, 1 H, J3–4 = J3–2 = 6.2 Hz, H-3), 2.91
(AB part of an ABX system, 2 H, JAB = 14.5 Hz, JAX = 7.8 Hz,
JBX = 4.1 Hz, Dm = 57.1 Hz, H-6), 2.34 (s, 3 H, Me of pTs), 2.33
(d, 1 H, J = 4.1 Hz, OH). 13C NMR (75 MHz, CDCl3), d (ppm) =
165.1 (CO), 149.6 (C-5), 145.1 (Cq arom.), 137.2 (Cq arom.), 137.1
(Cq arom), 133.2 (CH arom.), 132.8 (Cq arom.), 129.9 (CH arom.),
129.8 (CH arom.), 129.5 (Cq arom.), 128.4 (CH arom.), 128.3 (CH
arom.), 128.2 (CH arom.), 127.9 (CH arom.), 127.8 (CH arom.),
127.7 (CH arom.), 81.4 (C-2), 76.5 (N-OCH2Ph), 76.1 (C-3), 74.0
(OCH2Ph), 71.7 (C-4), 66.4 (C-1), 27.0 (CH2–6), 21.6 (Me of pTs).
Elemental analysis for C34H34N4O7S (642.721): Calcd. C, 63.54;
H, 5.33; N, 8.72. Found: C, 61.05; H, 5.44; N, 9.18%. H NMR
1
(300 MHz, CDCl3), d (ppm) = 7.97–6.84 (m, 19 H, aromatics), 5.35
(dd, 1 H, J4–3 = J4–5 = 9.8 Hz, H-4), 4.65 (dd, 1 H, J2–1 = J2–3
=
9.6 Hz, H-2), 4.58 (s, 2 H, PhCH2O), 4.50 and 4.35 (AB system, 2
H, J = 11 Hz, Dm = 44 Hz, PhCH2O), 3.63 (dd, 1 H, J3–2 = J3–4
=
9.3 Hz, H-3), 3.45 (m, 1 H, H-1), 3.08 (m, 1 H, H-5), 2.36 (ddd,
1 H, J6eq-6ax = 13.4 Hz, J6eq-1 = J6eq-5 = 2.4 Hz, H-6eq), 2.33 (s, 3
H, Me of Ts), 1.68 (ddd as an apparent q, 1 H, J6ax-6eq = J6ax-1
=
J6ax-5 = 13.3 Hz, H-6ax). 13C NMR (75 MHz, CDCl3), d (ppm) =
165.3 (CO), 149.8 (Cq arom.), 144.6 (Cq arom.), 137.1 (Cq arom.),
137.0 (Cq arom.), 134.6 (Cq arom.), 133.3 (CH arom.), 130.1 (CH
arom.), 129.7 (CH arom.), 129.6 (CH arom.), 128.7 (CH arom.),
128.4 (CH arom.), 128.3 (CH arom.), 128.0 (CH arom.), 127.9 (CH
arom.), 127.7 (CH arom.), 127.4 (CH arom.), 126.2 (CH arom.),
120.3 (CH arom.), 120.2 (CH arom.), 83.8 (C-2), 79.9 (C-3), 76.9
(OCH2Ph), 75.2 (OCH2Ph), 72.8 (C-4), 59.6 (C-1), 58.3 (C-5), 30.8
(CH2-6), 21.6 (Me of pTs).
Preparation of the benzylamine (18). A cold solution (0 ◦C)
of Me4NBH(AcO)3 (799 mg; 11.3 equiv.) and TFA (1 mL) in
acetonitrile (3 mL) was added to a solution of the benzyl oximine
17 (165 mg; 0.267 mmole) in acetonitrile (4 mL) and TFA
(2 mL) at 0 ◦C. The reaction mixture was then stirred at room
temperature for 2.5 h and then poured into a vigorous stirred ice
cold solution (0 ◦C) of water (20 mL) and diethyl ether (15 mL).
The aqueous layer was neutralized with an aqueous solution of
KOH (2.6g/15 mL). The organic layer was washed with water
(2 × 10 mL), brine, dried (MgSO4), filtered and concentrated under
reduced pressure to give a white solid (305 mg). This crude product
was purified with a chromatography column on silica gel (AcOEt–
cyclohexane; 1 : 2) to afford a crystalline white solid of the amine
18, which was recrystallized in die◦thyl ether to give white needles
(115 mg; 69.7%). Mp = 119–120 C (diethyl ether). [a]2D0 = +9.5
(c 1.1 in CHCl3). Elemental analysis for C34H35NO8S (617.708):
Calcd. C, 66.11; H, 5.71; N, 2.27. Found: C, 65.95; H, 5.89; N,
2.19%. 1H NMR (300 MHz, CDCl3), d (ppm) = 7.97–6.84 (m, 19
Notes and references
1 (a) N. Tanaka in Aminoglycoside Antibiotics, ed. H. Umezawa and
I. R. Hooper, Springer-Verlag, New York, 1982, pp. 221–266; (b) J. F.
Fisher, S. O. Meroueh and S. Mobashery, Chem. Rev., 2005, 105, 395–
424; (c) T. A. Mukhtar and G. D. Wright, Chem. Rev., 2005, 105,
529–542; (d) G. F. Busscher, F. P. Rutjes and F. L. van Delft, Chem.
Rev., 2005, 105, 775–791.
2 (a) J. Davies, L. Gorini and B. D. Davis, Mol. Pharmacol., 1965, 1,
93–106; (b) D. Moazed and H. F. Noller, Nature, 1987, 327, 389–394;
(c) D. Moazed and H. F. Noller, J. Mol. Biol., 1990, 211, 135–145; (d) P.
Purohit and S. Stem, Nature, 1994, 370, 659–662; (e) D. Formy, M. I.
Recht, S. C. Blanchard and J. D. Puglisi, Science, 1996, 274, 1367–1371;
(f) D. Formy, S. Yoshozawa and J. D. Puglisi, J. Mol. Biol., 1998, 277,
333–345; (g) Q. Vicens and E. Westhof, Structure, 2001, 9, 647–658;
(h) Q. Vicens and E. Westhof, J. Mol. Biol., 2003, 326, 1175–1188; (i) B.
Franc¸ois, R. J. M. Russell, J. B. Murray, F. Aboul-ela, B. Masquida, Q.
Vicens and E. Westhof, Nucleic Acids Res., 2005, 33, 5677–5690.
3 (a) J. Haddad, S. Vakulenko and S. Mobashery, J. Am. Chem. Soc.,
1999, 121, 11922–11923; (b) S. Palumbi, Science, 2001, 293, 1786–1790;
(c) S. Hanessian, A. Kornienkoa and E. E. Swayze, Tetrahedron, 2003,
59, 995–1007; (d) S. Magnet and J. S. Blanchard, Chem. Rev., 2005,
H, aromatics), 5.60 (broad s, 1 H, NH), 5.38 (dd, 1 H, J4–3 = J4–5
=
10.0 Hz, H-4), 4.60 and 4.56 (AB system, 2 H, J = 12 Hz, Dm =
2.7 Hz, PhCH2O), 4.48 (m, 1 H, H-1), 4.47 (m, 1 H, H-2), 4.35 (s,
2 H, OCH2Ph), 4.01 (dd, 1 H, J3–4 = J3–2 = 9.2 Hz, H-3), 3.45 (m,
1 H, H-5), 2.63 (broad s, 1 H, OH), 2.31 (s, 3 H, Me of pTs), 2.22
(ddd, 1 H, J6eq-6ax = 14.4 Hz, J6eq-1 = J6eq-5 = 3.9 Hz, H-6eq), 1.81
(ddd, 1 H, J6ax-6eq = J6ax-5 = 14.3 Hz, J6ax-1 = 2.1 Hz, H-6ax). 13C
NMR (75 MHz, CDCl3), d (ppm) = 165.5 (CO), 145.1 (Cq arom.),
137.5 (Cq arom.), 133.1 (CH arom.), 132.9 (Cq arom.), 129.8 (CH
arom.), 129.7 (CH arom.), 128.4 (CH arom.), 128.3 (CH arom.),
128.2 (CH arom.), 127.9 (CH arom.), 127.8 (CH arom.), 127.7
(CH arom.), 127.5 (CH arom.), 127.3 (CH arom.). 84.7 (C-2), 77.5
(C-3), 76.6 (OCH2Ph), 75.1 (OCH2Ph), 73.3 (C-4), 67.5 (C-1), 56.2
(C-5), 30.9 (CH2–6), 21.6 (Me of pTs).
¨
105, 477–497; (e) V. Aberg and F. Almqvist, Org. Biomol. Chem., 2007,
5, 1827–1834; (f) M. Hainrichson, I. Nudelman and T. Baasov, Org.
Biomol. Chem., 2008, 6, 227–239.
4 (a) D. Vourloumis, M. Takahashi, G. C. Winters, K. B. Simonsen, B. K.
Ayida, S. Barluenga, S. Qamar, S. Shandrick, Q. Zhao and T. Hermann,
Bioorg. Med. Chem. Lett., 2002, 12, 3367–3372; (b) B. Wu, J. Yang, D.
Robinson, S. Hofstadler, R. Griffey, E. E. Swayze and Y. He, Bioorg.
Med. Chem. Lett., 2003, 13, 3915–3918; (c) X. Wang, M. T. Migawa,
K. A. Sannes-Lowery and E. E. Swayze, Bioorg. Med. Chem. Lett.,
2005, 15, 4919–4922; (d) Q. Han, Q. Zhao, S. Fish, K. B. Simonsen, D.
Vourloumis, J. M. Froelich, D. Wall and T. Hermann, Angew. Chem.,
Int. Ed., 2005, 44, 2694–2700; (e) D. Vourloumis, G. C. Winters, K. B.
Simonsen, M. Takahashi, B. K. Ayida, S. Shandrick, Q. Zhao, Q. Han
and T. Hermann, ChemBioChem, 2005, 6, 58–65; (f) A. Ironmonger,
B. Whittaker, A. J. Baron, B. Clique, C. J. Adams, A. E. Ashcroft,
P. G. Stockleyb and A. Nelson, Org. Biomol. Chem., 2007, 5, 1081–
1086; (g) F. Corzana, I. Cuesta, F. Freire, J. Revuelta, M. Torrado, A.
Bastida, A. J. Jime´nez-Barbero and J. L. Asensio, J. Am. Chem. Soc.,
2007, 129, 2849–2865; (h) J. Li, F.-I. Chiang, H.-N. Chen and C.-W. T.
Chang, J. Org. Chem., 2007, 72, 4055–4066.
Preparation of the azide (19). The aminoalcohol 18 (64 mg;
0.103 mmole) and triphenylphosphine (65 mg; 2.39 equiv.) were
dissolved in dry THF (1.5 mL). Diisopropyl azodicarboxylate
(45 lL; 2.21 equiv.) and diphenylphos◦phoryl azide (50 lL,
2.23 equiv.) were successively added at 0 C. The heterogeneous
reaction mixture was stirred at ambient temperature for 2.5 h
and then concentrated under reduced pressure to give a yellow
liquid, which was directly purified by chromatography on silica
gel (AcOEt–cyclohexane 1 : 1) to yield the desired product 19 as
a colorless oil (65 mg; 98.1%). [a]2D0 = −10.6 (c 1.7 in CHCl3).
5 D. H. Ryu, C.-H. Tan and R. R. Rando, Bioorg. Med. Chem. Lett.,
2003, 13, 901–903.
6 (a) D. A. Kuehl, Jr, M. N. Bishop and K. Folkers, J. Am. Chem. Soc.,
1951, 73, 881–882; (b) M. J. Cron, D. L. Johnson, F. M. Palermiti, Y.
Perron, H. D. Taylor, D. F. Whitehead and I. R. Hooper, J. Am. Chem.
Soc., 1958, 80, 752–753; (c) M. P. Georgiadis, V. Constantinou-Kokotou
and G. Kokotos, J. Carbohydr. Chem., 1991, 10, 739–748; (d) W. A.
Greenberg, E. S. Priestley, P. S. Sears, P. B. Alper, C. Rosenbohm, M.
This journal is
The Royal Society of Chemistry 2008
Org. Biomol. Chem., 2008, 6, 2952–2960 | 2959
©