9296
K. Matsubayashi et al. / Tetrahedron 66 (2010) 9291e9296
3. Conclusion
Supplementary data
To our knowledge, there have been few systematic in-
vestigations on the effect of the addition of TFA on the photo-
physical properties of aromatic imides, even though TFA has
frequently been used as a chemical switch of the fluorescence in-
tensity of aromatic imides with an intramolecular amino group,
which can quench the fluorescence of the imides by electron
transfer in the neutral state.16 Our results show that the com-
UV and fluorescence spectra of 1, 3, 4, and 5 in the presence of
various concentrations of TFA in benzene. Supplementary data as-
sociated with this article can be found in the online version, at
InChIKeys of the most important compounds described in this
article.
plexation of 1 and 2 with TFA in the ground state decreases the rate
References and notes
1
of the intersystem crossing from the
(pp
*
) to the 3(n
*
p ) levels,
1. (a) Bailly, C.; Carrasco, C.; Joubert, A.; Bal, C.; Wattez, N.; Hildebrand, M.-P.; Lansiaux,
A.; Colson, P.; Houssier, C.; Cacho, M.; Ramos, A.; Brana, M. F. Biochemistry 2003, 42,
4136; (b) Brana, M. F.; Ramos, A. Curr. Med. Chem.: Anti-Cancer Agents 2001, 1, 237.
2. Malvyiya, V. K.; Liu, P. Y.; Alberts, D. S.; Surwitt, E. A.; Craig, J. B.; Hanningan, E.
V. Am. J. Clin. Oncol. 1992, 15, 41.
3. Takada, T.; Kawai, K.; Tojo, S.; Majima, T. J. Phys. Chem. B 2004, 108, 761.
4. (a) Rogers, J. E.; Rostkowski, B. A.; Kelly, L. A. Photochem. Photobiol. 2001, 74, 521;
(b) Rogers, J. E.; Weiss, S. J.; Kelly, L. A. J. Am. Chem. Soc. 2000,122, 427; (c) Aveline,
B. M.; Matsugo, S.; Redmond, R. W. J. Am. Chem. Soc. 1997, 119, 11785; (d) Saito,
I.; Takayama, M.; Sugiyama, H.; Nakatani, K. J. Am. Chem. Soc. 1995, 117, 6406;
(e) Saito, I.; Takayama, M.; Kawanishi, S. J. Am. Chem. Soc. 1995, 117, 5590.
5. (a) Zhang, J.; Woods, J.; Brown, P. B.; Lee, K. D.; Kane, R. R. Bioorg. Med. Chem.
Lett. 2002, 12, 853; (b) Brana, M. F.; Castellano, J. M.; Moran, M.; Perez de Vega,
M. J.; Qian, X. D.; Romerdahl, C. A.; Kelhauer, G. Eur. J. Med. Chem. 1995, 30, 235;
(c) Abraham, B.; Kelly, L. A. J. Phys. Chem. B 2003, 107, 12534.
whose energy is selectively increased by the complexation, and
thus increases the fluorescence quantum yield Fflu and photo-
reactivity of the singlet excited state of 2. The effect of the com-
plexation of 2 and TFA on the photophysical properties and
photoreactivity is more remarkable than those with complexation
of TFE.14 It is interesting that the simple addition of a small amount
of acid can markedly control the photophysical properties and
photoreactivity of aromatic imides widely used in numerous
applications.
6. Cosnard, F.; Wintgens, V. Tetrahedron Lett. 1998, 39, 2751.
7. Niu, C. G.; Li, Z. Z.; Zhang, X. B.; Lin, W. Q.; Shen, G. L.; Yu, R. Q. Anal. Bioanal.
Chem. 2002, 372, 519.
4. Experimental section
4.1. General
8. (a) Nandhikonda, P.; Begaye, M. P.; Cao, Z.; Heagy, M. D. Chem. Commun. 2009,
4941; (b)Paudel, S.;Nandhikonda, P.; Heagy, M. D. J. Fluoresc. 2009,19, 681; (c) Cao,
H.; Chang, V.; Hernandez, R.; Heagy, M. D. J. Org. Chem. 2005, 70, 4929;(d) Demeter,
A.; Bérces, T.; Biczók, L.; Wintgens, V.; Valat, P.; Kossanyi, J. J. Phys. Chem.1996, 100,
2001; (e) Wintgens, V.; Valat, P.; Kossanyi, J.; Demeter, A.; Biczók, L.; Berces, T. J.
Photochem. Photobiol., A 1996, 93, 109; (f) Demerter, A.; Berces, T.; Biczók, L.;
Wintgens, V.; Valat, P.; Kossanyi, J. J. Chem. Soc., Faraday Trans. 1994, 90, 2635.
9. Valat, P.; Wintgens, V.; Kossanyi, J.; Biczók, L.; Demeter, A.; Bérces, T. Helv. Chim.
Acta 2001, 84, 2813.
UV spectra were measured by use of a JASCO UVIDEC-650
spectrometer. Fluorescence spectra were obtained on a Hitachi 850
spectrophotometer. NMR spectra were recorded on a JEOL JNM-AL-
400 (400 MHz) instrument.
Fluorescence spectra were measured under aerated conditions.
Fluorescence quantum yields were determined relative to that of
N-methyl-1,8-naphthalimide (2) in MeCN (Ff¼0.027).15 The fluo-
rescence quantum yields in benzene were determined to be
0.00026, 0.014, 0.22, 0.82, and 0.48 for imides 1, 2, 3, 4, and 5,
respectively.
̃
10. Valat, P.; Wintgens, V.; Kossanyi, J.; Biczók, L.; Demeter, A.; Bérces, T. J. Am.
̃
Chem. Soc. 1992, 114, 946.
11. Bon Hoa, G. H.; Kossanyi, J.; Demeter, A.; Biczók, L.; Bérces, T. Photochem. Pho-
tobiol. Sci. 2004, 3, 473.
12. Cao, H.; McGill, T.; Heagy, M. D. J. Org. Chem. 2004, 69, 2959.
13. Kubo, Y.; Suto, M.; Tojo, S.; Araki, T. J. Chem. Soc., Perkin Trans. 1 1986, 771.
14. Matsubayashi, K.; Kubo, Y. J. Org. Chem. 2008, 73, 4915.
15. Wintgens, V.; Valat, P.; Kossanyi, J.; Biczók, L.; Demerter, A.; Bérces, T. J. Chem.
Soc., Faraday Trans. 1994, 90, 411.
The preparation, purification, and characterization of imides 1,17
2,18 3,19 4,15 and 520 have been described elsewhere. Solvents, TFA,
and styrene (8) were commercially available.
Photoreactions of 2 and 8 were carried out under N2 by using an
Eikosha EHB-W-300 high-pressure Hg-lamp through an aq CuSO4
16. Abad, S.; Kluciar, M.; Miranda, M. A.; Pischel, U. J. Org. Chem. 2005, 52, 3614.
17. Sachs, F. Chem. Ber. 1898, 31, 1228.
̃
18. Somich, C.; Mazzocchi, P. H.; Ammon, H. L. J. Org. Chem. 1987, 70, 10565.
19. Kubo, Y.; Suto, M.; Araki, T. J. Org. Chem. 1986, 51, 4404.
filter (l>320 nm).
20. Kubo, Y.; Asai, N.; Araki, T. J. Org. Chem. 1985, 50, 5484.