ACS Medicinal Chemistry Letters
Letter
material is available free of charge via the Internet at http://
Table 3. Activity of Compounds against the Proliferation of
Human CA46 Burkitt Lymphoma Cells
compd
IC50 (nM) ± SD
% mitotic cells at 10 × IC50
AUTHOR INFORMATION
■
CA-4
12b
6c
6 ± 1
68 ± 8
60 ± 10
66 ± 6
45 ± 10
71 ± 7
350 ± 100
2300 ± 300
2500 ± 700
230 ± 100
Corresponding Author
*Tel: +44 1225 386639. Fax: +44 1225 386114. E-mail: B.V.L.
8c
9c
Funding
This work was supported by Sterix Ltd., a member of the Ipsen
group, by VIP awards and a Programme Grant (082837) from
the Wellcome Trust.
The effects of C-3 methylation on the energy states of
conformers of a model system, 3-methyl-N-benzyl-1,2,3,4-
tetrahydroisoquinoline, arising from rotation of the N-benzyl
group, and precession of the phenyl ring of this group around
its axis, were assessed using computational energy calcula-
tions.21 These calculations indicate, as we had postulated, that
in the minimal energy conformation the N-benzyl group is
projected into the area of space close to that occupied by the
steroidal D ring in the estratriene series. This is illustrated in
Figure 3 where the minimal energy state of the (R)-enantiomer
REFERENCES
■
(1) Jordan, M. A.; Wilson, L. Microtubules as a target for anticancer
drugs. Nat. Rev. Cancer 2004, 4, 253−265.
(2) Hadfield, J. A.; Ducki, S.; Hirst, N.; McGown, A. T.; Meijer, L.;
Jezequel, A.; Roberge, M. Progress in Cell Cycle Research. Prog. Cell
Cycle Res. 2003, 309−325.
(3) Reed, M. J.; Purohit, A.; Newman, S. P.; Potter, B. V. L. Steroid
sulfatase: molecular biology, regulation, and inhibition. Endocr. Rev.
2005, 26, 171−202.
(4) Purohit, A.; Hejaz, H. A. M.; Walden, L.; MacCarthy-Morrogh,
L.; Packham, G.; Potter, B. V. L; Reed, M. J. The effect of 2-
methoxyoestrone-3-O-sulphamate on the growth of breast cancer cells
and induced mammary tumours. Int. J. Cancer 2000, 85, 584−589.
(5) Leese, M. P.; Hejaz, H. A. M.; Mahon, M. F.; Newman, S. P.;
Purohit, A.; Reed, M. J.; Potter, B. V. L. A-ring-substituted estrogen-3-
O-sulfamates: potent multitargeted anticancer agents. J. Med. Chem.
2005, 48, 5243−5256.
(6) MacCarthy-Morrogh, L.; Townsend, P. A.; Purohit, A.; Hejaz, H.
A. M.; Potter, B. V. L; Reed, M. J.; Packham, G. Differential effects of
estrone and estrone-3-O-sulfamate derivatives on mitotic arrest,
apoptosis, and microtubule assembly in human breast cancer cells.
Cancer Res. 2000, 60, 5441−5450.
(7) Ireson, C. R.; Chander, S. K.; Purohit, A.; Perera, S.; Newman, S.
P.; Parish, D.; Leese, M. P.; Smith, A. C.; Potter, B. V. L; Reed, R. J.
Pharmacokinetics and efficacy of 2-methoxyoestradiol and 2-
methoxyoestradiol-bis-sulphamate in vivo in rodents. Br. J. Cancer
2004, 90, 932−937.
(8) Jourdan, F.; Leese, M. P.; Dohle, W.; Hamel, E.; Ferrandis, E.;
Newman, S. P.; Purohit, A.; Reed, M. J.; Potter, B. V. L. Synthesis,
Antitubulin, and Antiproliferative SAR of Analogues of 2-Methox-
yestradiol-3,17-O,O-bis-sulfamate. J. Med. Chem. 2010, 53, 2942−2951.
(9) Leese, M. P.; Newman, S. P.; Purohit, A.; Reed, M. J.; Potter, B.
V. L. 2-Alkylsulfanyl estrogen derivatives: synthesis of a novel class of
multi-targeted anti-tumour agents. Bioorg. Med. Chem. Lett. 2004, 14,
3135−3138.
(10) Leese, M. P.; Leblond, B.; Newman, S. P.; Purohit, A.; Reed, M.
J.; Potter, B. V. L. Anti-cancer activities of novel D-ring modified 2-
substituted estrogen-3-O-sulfamates. J. Steroid Biochem. Mol. Biol.
2005, 94, 239−251.
(11) Leese, M. P.; Leblond, B.; Smith, A.; Newman, S. P.; Di Fiore,
A.; De Simone, G.; Supuran, C. T.; Purohit, A.; Reed, M. J.; Potter, B.
V. L. 2-Substituted estradiol bis-sulfamates, multitargeted antitumor
agents: synthesis, in vitro SAR, protein crystallography, and in vivo
activity. J. Med. Chem. 2006, 49, 7683−7696.
(12) Leese, M. P.; Jourdan, F. L.; Gaukroger, K.; Mahon, M. F.;
Newman, S. P.; Foster, P. A.; Stengel, C.; Regis-Lydi, S.; Ferrandis, E.;
Di Fiore, A.; De Simone, G.; Supuran, C. T.; Purohit, A.; Reed, M. J.;
Potter, B. V. L. Structure−activity relationships of C-17 cyano-
substituted estratrienes as anticancer agents. J. Med. Chem. 2008, 51,
1295−1308.
(13) Jourdan, F.; Bubert, C.; Leese, M. P.; Smith, A.; Ferrandis, E.;
Regis-Lydi, S.; Newman, S. P.; Purohit, A.; Reed, M. J.; Potter, B. V. L.
Effects of C-17 heterocyclic substituents on the anticancer activity of
2-ethylestra-1,3,5(10)-triene-3-O-sulfamates: synthesis, in vitro evalua-
Figure 3. Overlay of the minimum energy conformation of 3(R)-
methyl-2-benzyl-1,2,3,4-tetrahydroisoquinoline (cyan) with estradiol
(green) viewed from two perspectives.
is overlaid with the energy-minimized estradiol core (see the
Supporting Information for further detail). In contrast, in the
maximum energy conformation the N-benzyl group eclipses the
C-3 methyl group and is thus far away from the area of space
occupied by the steroidal D ring.21 The energy difference
between these states for either C-3 enantiomer is more than
120 kJ/mol. These calculations support our postulate that C-3
methylation favors adoption of a “steroid-like” conformation,
and thus, it seems reasonable to propose that the positive
effects of C-3 methylation on activity can, to some degree, be
ascribed to this conformational biasing.
We have thus demonstrated how translation of pharmaco-
phore elements can be successfully used to “series hop” and
deliver new series of microtubule disruptors with excellent
antiproliferative activity. These novel THIQ derivatives were
optimized by biasing the conformational population through
introduction of a steric buttress at C-3. In addition to an activity
profile that matches the steroidal compounds from which their
design was inspired, the new THIQ derivatives have low
molecular weight and an excellent solubility profile. They form
water-soluble salts and can be formulated as solutions in mild
aqueous acid. We are actively exploring further optimization
and preclinical development of this series and the application of
THIQ-based steroidomimetics to other therapeutic targets.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures and analytical data for compounds 8c
and 9c and details of computational energy calculations. This
8
dx.doi.org/10.1021/ml200232c|ACS Med. Chem. Lett. 2012, 3, 5−9