Yuzhou Wang et al.
UPDATES
(0.56 mL, 5.54 mmol) and 4-(N,N-dimethylamino)pyridine
(17.5 mg, 0.14 mmol). After stirring the mixture at room
temperature for 1 day, it was filtered through a plug of silica
gel using diethyl ether/dichloromethane, 1:1, as eluent. Fol-
lowing removal of the solvent under vacuum, the crude
product was purified by flash chromatography on silica gel
(diethyl ether/dichloromethane, 1:9) to give the tetraacetate
29; yield: 43 mg (76%).
[3] For very recent synthetic work in the area, see: a) Y.
Hirata, S. Nakamura, N. Watanabe, O. Kataoka, T. Kur-
osaki, M. Anada, S. Kitagaki, M. Shiro, S. Hashimoto,
Chem. Eur. J. 2006, 12, 8898–8925; b) J. O. Bunte,
A. N. Cuzzupe, A. M. Daly, M. A. Rizzacasa, Angew.
Chem. 2006, 118, 6524–6528; Angew. Chem. Int. Ed.
2006, 45, 6376–6380; c) M. Tsubuki, H. Okita, T.
Honda, Heterocycles 2006, 67, 731–748; d) S. Naka-
mura, H. Sato, Y. Hirata, N. Watanabe, S. Hashimoto,
Tetrahedron 2005, 61, 11078–11106, and references
cited therein; e) E. Negishi, Z. Tan, B. Liang, T. Novak,
Proc. Natl. Acad. Sci. USA 2004, 101, 5782–5787.
[4] For prior studies in the C2-symmetric series, see: A.
Bierstedt, J. Roels, J. Zhang, Y. Wang, R. Frçhlich, P.
Metz, Tetrahedron Lett. 2003, 44, 7867–7870.
[5] For alternative symmetry-based approaches, see:
a) K. D. Freeman-Cook, R. L. Halcomb, J. Org. Chem.
2000, 65, 6153–6159; b) D. J. Wardrop, A. I. Velter,
R. E. Forslund, Org. Lett. 2001, 3, 2261–2264.
[6] The term “pseudo C2-symmetric” is used to character-
ize chains that would be C2-symmetric if they did not
contain (a) central chirotopic, non-stereogenic cen-
ter(s); see also ref.[7c].
[7] For reviews on two-directional synthesis, see: a) M. E.
Maier, S. Reuter, GIT Fachz. Lab. 1997, 41, 1108,
1110–1112; b) S. R. Magnuson, Tetrahedron 1995, 51,
2167–2213; c) C. S. Poss, S. L. Schreiber, Acc. Chem.
Res. 1994, 27, 9–17; d) M. E. Maier, Nachr. Chem.
Tech. Lab. 1993, 41, 314–316, 318, 321–322, 324–325,
328, 330.
[8] For recent examples of intramolecular desymmetriza-
tion of pseudo C2-symmetric substrates, see: E. A.
Voight, C. Rein, S. D. Burke, J. Org. Chem. 2002, 67,
8489–8499.
19: Rf =0.10 (dichloromethane/diethyl ether, 9:1); [a]2D4:
˜
+95.3 (c 0.77, CHCl3); IR (neat): n=2932 (w), 2849 (w),
1737 (s, C=O), 1215 (s), 1058 (s), 961 (m), 875 (w), 605 (s)
1
cmÀ1; H NMR (CDCl3, 500 MHz): d=1.43 (s, 3H), 1.96 (s,
3H), 2.07 (s, 3H), 2.13 (s, 3H), 2.18 (s, 3H), 2.21 (s, 3H),
3
3
4.42 (d, J=4.5 Hz, 1H), 4.58 (d, J=2.2 Hz, 1H), 5.09–5.12
(m, 2H), 5.15 (d, 3J=4.5 Hz, 1H), 5.31–5.32 (m, 2H);
13C NMR (CDCl3, 126 MHz): d=19.40 (q), 20.51 (q), 20.65
(q), 20.73 (q, intense), 27.73 (q), 68.08 (d), 68.69 (d), 73.02
(d), 76.10 (d), 77.18 (d), 77.25 (d), 108.26 (s), 169.86 (s),
169.99 (s), 170.06 (s, intense), 203.92 (s); MS (LC/MS, ESI):
+
m/z (%)=434 (100) [M+NH4 ]; anal. calcd. for C18H24O11:
C 51.92, H 5.81; found: C 51.98, H 5.84.
29: Rf =0.30 (dichloromethane/diethyl ether, 9:1); [a]2D4:
˜
+78.0 (c 0.60, CHCl3); IR (neat): n=2925 (w), 2853 (w),
1739 (s, C=O), 1213 (s), 1065 (s), 953 (m), 873 (w), 603 (s)
1
cmÀ1; H NMR (CDCl3, 500 MHz): d=1.54 (s, 3H), 2.03 (s,
3H), 2.11 (s, 3H), 2.168 (s, 3H), 2.171 (s, 3H), 2.28 (s, 3H),
4.34 (d, 3J=2.3 Hz, 1H), 4.45 (dd, 3J=2.8 Hz, 3J=5.0 Hz,
1H), 4.86 (dd, 3J=2.3 Hz, 3J=2.8 Hz, 1H), 5.11 (d, 3J=
3
2.3 Hz, 1H), 5.16 (d, J=2.3 Hz, 1H), 5.22 (d, 3J=5.0 Hz,
1H); 13C NMR (CDCl3, 126 MHz): d=20.42 (q), 20.65 (q,
intense), 20.71 (q), 22.47 (q), 27.94 (q), 65.52 (d), 70.77 (d),
76.13 (d), 77.26 (d), 80.46 (d, intense), 104.26 (s), 169.54 (s),
169.58 (s), 169.82 (s), 170.21 (s), 201.36 (s); MS (LC/MS,
+
ESI): m/z (%)=434 (100) [M+NH4 ]; anal. calcd. for
C18H24O11: C 51.92, H 5.81; found: C 52.07, H 5.84.
[9] D. H. G. Crout, V. S. B. Gaudet, K. O. Hallinan, J.
Chem. Soc.,Perkin Trans. 1 1993, 805–812.
[10] We prepared meso diethyl tartrate 4 from diethyl male-
ate in 89% yield according to the dihydroxylation pro-
tocol described for dimethyl maleate: T. K. M. Shing,
E. K. W. Tam, V. W.-F. Tai, I. H. F. Chung, Q. Jiang,
Chem. Eur. J. 1996, 2, 50–57.
[11] Thallous ethoxide has been used successfully with di-
ethyl d-tartrate: a) S. V. Taylor, L. D. Vu, T. P. Begley,
U. Schçrken, S. Grolle, G. A. Sprenger, S. Bringer-
Meyer, H. Sahm, J. Org. Chem. 1998, 63, 2375–2377;
b) H. O. Kalinowski, G. Crass, D. Seebach, Chem. Ber.
1981, 114, 477–487.
Acknowledgements
Financial support of this work by the Deutsche Forschungs-
gemeinschaft is gratefully acknowledged. Special thanks are
due to Marie-Kristin Lemke,TU Dresden,for her valuable
experimental help.
[12] a) M. Jørgensen, E. H. Iversen, A. L. Paulsen, R.
Madsen, J. Org. Chem. 2001, 66, 4630–4634; b) J. M.
Nuzillard, A. Boumendjel, G. Massiot, Tetrahedron
Lett. 1989, 30, 3779–3780; c) S. Saito, S. Hamano, H.
Moriyama, K. Okada, T. Moriwake, Tetrahedron Lett.
1988, 29, 1157–1160.
[13] For a review, see: R. A. Johnson, K. B. Sharpless, in
Catalytic Asymmetric Synthesis, 2nd edn., (Ed.: I.
Ojima), Wiley-VCH, New York, 2000, pp 357–398.
[14] The bis-Weinreb amide corresponding to 6 with an iso-
propylidene protection of the diol, as well as the bis-
methyl ketone analogues with benzyl or isopropylidene
blocking of the diol gave rise to tetrahydrofuran deriva-
tives after a single AD reaction, whereas the bis-
methyl ketone analogue with TBS-protected diol was
References
[1] For reviews on the synthesis and biological activity of
the zaragozic acids/squalestatins, see: a) S. Nakamura,
Chem. Pharm. Bull. 2005, 53, 1–10; b) A. Armstrong,
T. J. Blench, Tetrahedron 2002, 58, 9321–9349; c) N.
Jotterand, P. Vogel, Curr. Org. Chem. 2001, 5, 637–661;
d) A. Nadin, K. C. Nicolaou, Angew. Chem. 1996, 108,
1732–1766; Angew. Chem. Int. Ed. 1996, 35, 1622–
1656; e) U. Koert, Angew. Chem. 1995, 107, 849–855;
Angew. Chem. Int. Ed. 1995, 34, 773–778.
[2] a) C. Bate, L. Rumbold, A. Williams, J. Neuroinflam-
mation 2007, 4:5 (doi:10.1186/1742–2094–4–5); b) C.
Bate, M. Salmona, L. Diomede, A. Williams, J. Biol.
Chem. 2004, 279, 14983–14990.
2366
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2007, 349, 2361 – 2367