5986
M.-C. Duclos et al. / Tetrahedron Letters 53 (2012) 5984–5986
[PdCl(πC3H5)]2 (0.04 mol%)
H2O2 30% (10 eq), KF (6 eq)
OH
SiCl3
L* (0.08 mol%), HSiCl3 (1.2 eq)
KHCO3 (6 eq), THF, MeOH
rt, 18 h
rt, 16 h
Scheme 4. Conditions used for asymmetric hydrosilylation of styrene.
3. (a) Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori,
R. J. Am. Chem. Soc. 1980, 102, 7932–7934; (b) Miyashita, A.; Takaya, H.; Souchi,
T.; Noyori, R. Tetrahedron: Asymmetry 1984, 40, 1245–1253.
4. Blaser, H. U.; Schmidt, E. Asymmetric Catalysis on Industrial Scale; WILEY-VCH
Verlag GmbH & Co, KGaA: Weinheim, Germany, 2004.
Table 1
Isolated yield and enantiomeric excess of the alcohol obtained after asymmetric
hydrosilylation of styrene with trichlorosilane catalyzed by palladium complexes
Entry
Ligand
Yield (%)
eea (%)
5. (a) Genêt, J.-P. Acc. Chem. Res. 2003, 36, 908–918; (b) Börner, A. Phosphorus
Ligands in Asymmetric Catalysis: Synthesis and Applications; WILEY-VCH Verlag
1
2
3
(R)-MOP
4
7
67
92
85
36
91
72
GmbH
& Co, KGaA: Weinheim, Germany, 2008; (c) Arnald Grabulosa P-
Stereogenic Ligands in Enantioselective Catalysis; Royal Society of Chemistry,
2011.
a
Determined by GC analysis on a Chiralcell column (70 °C during 3 min, increase
of 3 °C per min until 150 °C, 5 min at 150 °C).
6. Hayashi, T. Acc. Chem. Res. 2000, 33, 354–362.
7. (a) Crepy, K. V. L.; Imamoto, T. Adv. Synth. Catal. 2003, 345, 79–101; (b)
Vinokurov, N.; Pietrusiewicz, K. M.; Butenschoen, H. Tetrahedron: Asymmetry
2009, 20, 1081–1085; (c) Imamoto, T.; Saitoh, Y.; Koide, A.; Ogura, T.; Yoshida,
K. Angew. Chem., Int. Ed. 2007, 46, 8636–8639; (d) Trudeau, S.; Morken, J. P.
Tetrahedron 2006, 62, 11470–11476.
8. (a) Korpiun, O.; Lewis, R. A.; Chickos, J.; Mislow, K. J. Am. Chem. Soc. 1968, 90,
4842–4846; (b) Imamoto, T.; Oshiki, T.; Onozawa, T.; Kusumoto, T.; Sato, K. J.
Am. Chem. Soc. 1990, 112, 5244–5252; (c) Ohashi, A.; Kikuchi, S.-I.; Yasutake,
M.; Imamoto, T. Eur. J. Org. Chem. 2002, 2535–2546.
9. (a) Jugé, S.; Stephan, M.; Laffitte, J. A.; Genêt, J. P. Tetrahedron Lett. 1990, 31,
6357–6360; (b) Kaloun, E. B.; Merdes, R.; Genêt, J. P.; Uziel, J.; Jugé, S. J.
Organomet. Chem. 1997, 529, 455–463; (c) Carey, J. V.; Barker, M. D.; Brown, J.
M.; Russell, M. J. H. J. Chem. Soc., Perkin Trans. 1 1993, 831–839; (d) Brown, J. M.;
Carey, J. V.; Russell, M. J. H. Tetrahedron: Asymmetry 1990, 46, 4877–4886.
10. Muci, A. R.; Campos, K. R.; Evans, D. A. J. Am. Chem. Soc. 1995, 117, 9075–9076.
11. Jahjah, M.; Jahjah, R.; Pellet-Rostaing, S.; Lemaire, M. Tetrahedron: Asymmetry
2007, 18, 1224–1232.
12. Petit, C.; Favre-Réguillon, A.; Lemaire, M. Green Chem. 2010, 12, 326–330.
13. Volland, M.; Seitz, V.; Maase, M.; Flores, M.; Papp, R.; Sonne, K.; Stegmenn, V.;
Halbritter, K.; Noe, R.; Bartsch, M.; Siegel, W.; Becker, M.; Huttenloch, O.
WO03/062251A1, 2003.
14. Cai, D.; Payack, J. F.; Bender, D. R.; Hughes, D. L.; Verhoeven, T. R.; Reider, P. J.
Org. Synth. 1999, 76, 6–11.
15. Fehring, V.; Kadyrov, R.; Ludwig, M.; Holz, J.; Haage, K.; Selke, R. J. Organomet.
Chem. 2001, 621, 120–129.
16. Busacca, C. A.; Lorenz, J. C.; Grinberg, N.; Haddad, N.; Hrapchak, M.; Latli, B.;
Lee, H.; Sabila, P.; Saha, A.; Sarvestani, M.; Shen, S.; Varsolona, R.; Wei, X.;
Senanayake, C. H. Org. Lett. 2005, 7, 4277–4280.
17. Stankevic, M.; Pietrusiewicz, K. M. Synlett 2003, 1012–1016.
18. McKinstry, L.; Livinghouse, T. Tetrahedron 1994, 50, 6145–6154.
19. Dong, X.; Erkey, C. J. Mol. Catal. A: Chem. 2004, 211, 73–81.
20. (a) Kerrigan, N. J.; Dunne, E. C.; Cunningham, D.; McArdle, P.; Gilligan, K.;
Gilheany, D. G. Tetrahedron Lett. 2003, 44, 8461–8465; (b) Higham, L. J.; Clarke,
E. F.; Müller-Bunz, H.; Gilheany, D. G. J. Organomet. Chem. 2005, 690, 211–219.
21. (a) Berthod, M.; Favre-Réguillon, A.; Jahjah, M.; Mignani, G.; Docherty, G.;
Lemaire, M. Synlett 2007, 1545–1548; (b) Petit, C.; Favre-Réguillon, A.; Albela,
B.; Bonneviot, L.; Mignani, G.; Lemaire, M. Organometallics 2009, 28, 6379–
6382; (c) Pehlivan, L.; Métay, E.; Laval, S.; Dayoub, W.; Demonchaux, P.;
Mignani, G.; Lemaire, M. Tetrahedron Lett. 2010, 51, 1939–1941; (d) Shi, Y.;
Dayoub, W.; Chen, G.-R.; Lemaire, M. Tetrahedron Lett. 2011, 52, 1281–1283; (e)
Pehlivan, L.; Métay, E.; Laval, S.; Dayoub, W.; Demonchaux, P.; Mignani, G.;
Lemaire, M. Tetrahedron: Asymmetry 2011, 67, 1971–1976.
describing an excellent enantioselectivity of 92% by running the
reaction at 0 °C. In our case, our ligands are not sensitive to the
temperature as satisfactory enantioselectivities (respectively 91%
and 72%) were determined for ligands 4’ and 7’. This transforma-
tion is regioselective as only the branched silylated derivatives
were formed. The chirality of the alcohols (S) coming from the oxi-
dation of silyl derivatives was determined by GC analysis and by
co-injection with a reference. It was the same whatever be the chi-
rality of the phosphorus. These results are in agreement with the
literature data explaining the influence of the naphthyl ring of
the ligand which is close to the palladium.22 From previous results,
Hayashi6 assumed that the enantioselectivity during the hydrosily-
lation of styrene is related to the dihedral angle between the two
naphthyl rings in the binaphthyl skeleton which is controlled by
the steric bulkiness of the 20-substituent.23 In this work, the dihe-
dral angle is not controlled by the –OMe group indeed these values
are different (79.99 for compound 4, 84.94 for the R-MOP, and
89.93 for the 7) as a consequence these angles are not related to
the enantioselectivity.24 However, an electronic, a steric, and/or a
match/mismatch effect of the cyclohexyl and isopropyl groups
can explain the higher enantiomeric excess.
The MOP ligands (R,S)-40 and (R,R)-700 produce similar global ef-
fects on the scope of the hydrosilylation reaction, both on the yield
and the enantioselectivity. Also the most important result from
this study is that the configuration of the phosphorus atom is not
decisive for the asymmetric induction. Axial chirality is definitely
the most influential factor or the driving force to obtain efficiently
chiral secondary alcohols. Nevertheless, both electronic and/or ste-
ric effects seem important to increase the yield and selectivity. The
mechanism is currently under investigation.
22. Han, J. W.; Hayashi, T. Tetrahedron: Asymmetry 2010, 21, 2193–2197.
23. (a) Hayashi, T. Catal. Today 2000, 62, 3–15; (b) Kocovsky, P.; Vyskocil, S.;
Smrcina, M. Chem. Rev. 2003, 103, 3213–3246.
Acknowledgments
24. Crystal
data
for
(R,S)-2-(isopropylphenylphosphino)-20-methoxy-1,10-
We thank F. Albrieux, C. Duchamp, and N. Henriques from the
Centre Commun de Spectrométrie de Masse (ICBMS UMR-5246),
for the assistance and access to the Mass Spectrometry facilities.
binaphthyl 40:Molecular formula: C30H27OP, MW = 434.52, Orthorhombic,
space group P212121, a = 9.076 (1) Å, b = 15.049 (2) Å, c = 17.050 (2) Å,
V = 2328.8 (5) Å3, Z = 4, Dx = 1.239 Mg mꢁ3
,
l
= 0.14 mmꢁ1,T = 110 K,
F(000) = 920, Flack parameter: ꢁ0.18 (12), 17567 measured reflections, 5700
independent reflections (Rint = 0.056), CCDC deposition number : 871758.
Crystal data for (R,R)-2-(cyclohexylphenylphosphino)-20-methoxy-1,10-
binaphthyl 70: Molecular formula: C33H31OP, MW = 474.58, Orthorhombic,
P212121, a = 8.2439 (9) Å, b = 15.923 (2) Å, c = 19.648 (2) Å, V = 2579.1 (5) Å3,
References and notes
1. Kagan, H. B.; Dang Tuan, P. J. Am. Chem. Soc. 1972, 94, 6429–6433.
2. (a) Knowles, W. S.; Sabacky, M. J. Chem. Commun. 1968, 1445–1446; (b)
Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, D. J. J.
Am. Chem. Soc. 1977, 99, 5946–5952.
Z = 4, Dx = 1.222 Mg mꢁ3 = 0.13 mmꢁ1, T = 110 K, Flack parameter: 0.07 (12),
, l
19324 measured reflections, 6237 independent reflections(Rint = 0.058), CCDC
deposition number 871759.